x
1

Campo de fuerzas (física)



En física, un campo representa la distribución espacio-temporal de una magnitud física; es decir, es una propiedad que puede medirse en el entorno de cada punto de una región del espacio para cada instante del tiempo.

Matemáticamente, los campos se representan mediante una función definida sobre una cierta región. Gráficamente, se suelen representar mediante líneas o superficies de igual magnitud.

Históricamente fue introducido para explicar la acción a distancia de las fuerzas de gravedad, eléctrica y magnética, aunque con el tiempo su significado se ha extendido substancialmente, para describir variaciones de temperatura, tensiones mecánicas en un cuerpo, propagación de ondas, etc. El concepto de campo surge cuando en la física clásica, formalizada por Newton, se plantea una noción "campal" de espacio y tiempo. Esta nueva propuesta se deslindaría formalmente de la física aristotélica. En Aristóteles el espacio (y parecidamente el tiempo) tendía a convertirse en "espacio-de-cada-cosa", es decir, en lugar (ocupado por la cosa). Sin embargo, para Newton, que es decir: a partir de la física clásica, el espacio toma estado de absoluto, o ab-solutum, es decir, desligado (ab) y suelto (solutum) de causas finales y eficientes, y expuesto a fuerzas.[1]​ Con el advenimiento de la física moderna la noción de campo es entendida como una categoría coordinada con espacio-tiempo, es decir, espacio-tiempo-campo.[2]

Se dice que existe un campo asociado a una magnitud física, en una región del espacio, si se puede asignar un valor a dicha magnitud para todos los puntos de dicha región en cada instante.

Los sistemas físicos formados por un conjunto de partículas interactuantes de la mecánica clásica y los sistemas físicos de partículas relativistas sin interacción, son sistemas con un número finito de grados de libertad, cuyas ecuaciones de movimiento vienen dadas por ecuaciones diferenciales ordinarias como todos los ejemplos anteriores.

Los campos físicos, además de la variación de magnitud en el espacio, muestran la variación en el tiempo. Esa característica hace que los campos físicos se consideren informalmente como sistemas con un número infinito de grados de libertad. Las peculiaridades de los campos hacen que sus ecuaciones de "movimiento" o evolución temporal vengan dadas por ecuaciones en derivadas parciales en lugar de ecuaciones diferenciales ordinarias.

La noción de campo permite que una cosa pase de un estado potencial a un estado individual. En contraste con la física aristotélica, la noción de campo nos permite reconocer a la potencia como algo real. A propósito Juan David García Bacca nos dice: "El paso, pues, de estado "potencial" al actual no es el paso de "esta" realidad que estaba en potencia a "esta" realidad misma en estado de acto —que tal es la correlación entre estar-en-potencia y estar-en-acto en Aristóteles—, sino paso de "estado cósmico" supraindividual, a "estado individual", poseyendo ambos estados, cósmico e individual, o cósmico individualizado, propiedades reales, cuando el estado de potencia, en el sentido filosófico-aristotélico de esta palabra, era "incognosible" y no poseía propiedades reales".[3]​ García Bacca interpreta de la teoría de la relatividad de Einstein que junto a las categorías espacio y tiempo, que se coordinan objetivamente como una sola, es decir: espacio-tiempo, se agrega una tercera categoría que es campo gravitatorio. Con lo cual el bloque completo es espacio-tiempo-gravedad.[2]

A partir de la noción de campo en física, Rupert Sheldrake, no sin recibir fuertes críticas, propone la noción de campo mórfico.[4]

Un campo es uniforme si la magnitud que define al campo permanece constante.

Un campo se denomina estacionario si no depende del tiempo.

Una clasificación posible atendiendo a la forma matemática de los campos es:

Dado un campo físico es común definir, según el tipo de campo algunas de las siguientes características de dicho campo:

Según el tipo de campo físico pueden definirse otros campos derivados como operadores diferenciales sobre las componentes del campo original, los tipos operaciones usadas para definir estos otros campos derivados son:

En física el concepto surge ante la necesidad de explicar la forma de interacción entre cuerpos en ausencia de contacto físico y sin medios de sustentación para las posibles interacciones. La acción a distancia se explica, entonces, mediante efectos provocados por la entidad causante de la interacción, sobre el espacio mismo que la rodea, permitiendo asignar a dicho espacio propiedades medibles. Así, será posible hacer corresponder a cada punto del espacio valores que dependerán de la magnitud del cuerpo que provoca la interacción y de la ubicación del punto que se considera. Los campos más conocidos en física clásica son:

En teoría cuántica los campos se tratan como distribuciones que permiten asignar operadores que describen el campo. La existencia de un campo medible en una región del espacio se trata como un estado del espacio-tiempo consistente en que la medición de los operadores de campo sobre determinada región del espacio toma cierta distribución.

En teoría cuántica de campos, las partículas son tratadas como estados posibles de un campo cuántico, por lo que en esta teoría todas las entidades son campos distribuidos en el espacio-tiempo que interactúan mutuamente.

La mecánica de medios continuos estudia la deformación de un sólido continuo o el movimiento de un fluido, mediante la asignación a cada punto del medio continuo de un campo tensorial llamado tensor tensión y dos campos vectoriales: un campo de velocidades y un campo de desplazamientos. Todos esos campos se relacionan mediante un sistema complejo de ecuaciones diferenciales en derivadas parciales, generalmente no lineales. Debido a la complejidad de las ecuaciones de movimiento que describe la evolución temporal de ese tipo de sistemas muchas veces esos problemas sólo pueden ser abordados de manera práctica mediante técnicas numéricas como el método de los elementos finitos.

El estudio de propagación de ondas analiza cómo cierto tipo de perturbación puede afectar a las regiones vecinas en un medio material o en el vacío. Aunque existen diversos tipos de fenómenos ondulatorios, muchos fenómenos de propagación de ondas pueden ser modelizados por la ecuación de onda que es una ecuación diferencial lineal en derivadas parciales de tipo parabólico, para la que existen multitud de técnicas de resolución, tanto analíticas como numéricas.



Escribe un comentario o lo que quieras sobre Campo de fuerzas (física) (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!