x
1

Computación teórica



La teoría de la computación o teoría de la informática es un conjunto de conocimientos racionales y sistematizados que se centran en el estudio de la abstracción de los procesos, con el fin de reproducirlos con ayuda de sistemas formales; es decir, a través de símbolos y reglas lógicas. La teoría de la computación permite modelar procesos dentro de las limitaciones de dispositivos que procesan información y que efectúan cálculos; como, por ejemplo, el ordenador. Para ello, se apoya en la teoría de autómatas, a fin de simular y estandarizar dichos procesos, así como para formalizar los problemas y darles solución.[1]

Esta teoría provee modelos matemáticos que formalizan el concepto de computadora o algoritmo de manera suficientemente simplificada y general para que se puedan analizar sus capacidades y limitaciones. Algunos de estos modelos juegan un papel central en varias aplicaciones de las ciencias de la computación, incluyendo procesamiento de texto, compiladores, diseño de hardware e inteligencia artificial.

Existen muchos otros tipos de autómatas como las máquinas de acceso aleatorio, autómatas celulares, máquinas ábaco y las máquinas de estado abstracto; sin embargo en todos los casos se ha mostrado que estos modelos no son más generales que la máquina de Turing, pues la máquina de Turing tiene la capacidad de simular cada uno de estos autómatas. Esto da lugar a que se piense en la máquina de Turing como el modelo universal de computadora.

Esta teoría explora los límites de la posibilidad de solucionar problemas mediante algoritmos. Gran parte de las ciencias computacionales están dedicadas a resolver problemas de forma algorítmica, de manera que el descubrimiento de problemas imposibles es una gran sorpresa. La teoría de la computabilidad es útil para no tratar de resolver algorítmicamente estos problemas, ahorrando así tiempo y esfuerzo.

Los problemas se clasifican en esta teoría de acuerdo a su grado de imposibilidad:

Hay una versión más general de esta clasificación, donde los problemas incomputables se subdividen a su vez en problemas más difíciles que otros. La herramienta principal para lograr estas clasificaciones es el concepto de reducibilidad: Un problema se reduce al problema si bajo la suposición de que se sabe resolver el problema es posible resolver al problema ; esto se denota por , e informalmente significa que el problema no es más difícil de resolver que el problema . Por ejemplo, bajo la suposición de que una persona sabe sumar, es muy fácil enseñarle a multiplicar haciendo sumas repetidas, de manera que multiplicar se reduce a sumar.

Aun cuando un problema sea computable, puede que no sea posible resolverlo en la práctica si se requiere mucha memoria o tiempo de ejecución. La teoría de la complejidad computacional estudia las necesidades de memoria, tiempo y otros recursos computacionales para resolver problemas; de esta manera es posible explicar por qué unos problemas son más difíciles de resolver que otros. Uno de los mayores logros de esta rama es la clasificación de problemas, similar a la tabla periódica, de acuerdo a su dificultad. En esta clasificación los problemas se separan por clases de complejidad.

Esta teoría tiene aplicación en casi todas las áreas de conocimiento donde se desee resolver un problema computacionalmente, porque los investigadores no solo desean utilizar un método para resolver un problema, sino utilizar el más rápido. La teoría de la complejidad computacional también tiene aplicaciones en áreas como la criptografía, donde se espera que descifrar un código secreto sea un problema muy difícil a menos que se tenga la contraseña, en cuyo caso el problema se vuelve fácil.

La teoría de la computación comienza propiamente a principios del siglo XX, poco antes que las computadoras electrónicas fuesen inventadas. En esta época varios matemáticos se preguntaban si existía un método universal para resolver todos los problemas matemáticos. Para ello debían desarrollar la noción precisa de método para resolver problemas, es decir, la definición formal de algoritmo.

Algunos de estos modelos formales fueron propuestos por precursores como Alonzo Church (cálculo Lambda), Kurt Gödel (funciones recursivas) y Alan Turing (máquina de Turing). Se ha mostrado que estos modelos son equivalentes en el sentido de que pueden simular los mismos algoritmos, aunque lo hagan de maneras diferentes. Entre los modelos de cómputo más recientes se encuentran los lenguajes de programación, que también han mostrado ser equivalentes a los modelos anteriores; esto es una fuerte evidencia de la conjetura de Church-Turing, de que todo algoritmo habido y por haber se puede simular en una máquina de Turing, o equivalentemente, usando funciones recursivas. En 2007 Nachum Dershowitz y Yuri Gurevich publicaron una demostración de esta conjetura basándose en cierta axiomatización de algoritmos.[2]

Uno de los primeros resultados de esta teoría fue la existencia de problemas imposibles de resolver algorítmicamente, siendo el problema de la parada el más famoso de ellos. Para estos problemas no existe ni existirá ningún algoritmo que los pueda resolver, no importando la cantidad de tiempo o memoria se disponga en una computadora. Asimismo, con la llegada de las computadoras modernas se constató que algunos problemas resolubles en teoría eran imposibles en la práctica, puesto que dichas soluciones necesitaban cantidades irrealistas de tiempo o memoria para poderse encontrar.



Escribe un comentario o lo que quieras sobre Computación teórica (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!