x
1

Ecuación diferencial de Bernoulli



La ecuación diferencial de Bernoulli es una ecuación diferencial ordinaria de primer orden, formulada por Jacob Bernoulli. Esta ecuación fue transformada, por Gottfried Leibniz en 1693 y por Johann Bernoulli en 1697, en una ecuación diferencial lineal de primer orden mediante el cambio de variable , esta ecuación es de la forma

donde y son funciones continuas en un intervalo abierto con .

Dividimos la ecuación diferencial entre y obtenemos

o, equivalentemente

Definiendo obtenemos las igualdades

o

Reemplazando en la ecuación diferencial

Ecuación que resulta ser una ecuación diferencial lineal cuya solución está dada por

donde es una constante arbitraria, como entonces

Finalmente

Cuando entonces la ecuación

se reduce a la ecuación lineal

cuya solución está dada por

Cuando entonces la ecuación

se reduce a

que puede resolverse mediante variables separables, dicha solución está dada por

Para resolver la ecuación:

(*)

Se hace el cambio de variable , que introducido en (*) da simplemente:

(**)

Multiplicando la ecuación anterior por el factor: se llega a:

Si se sustituye (**) en la última expresión y operando:

Que es una ecuación diferencial lineal que puede resolverse fácilmente. Primeramente se calcula el factor integrante típico de la ecuación de Bernouilli:

Y se resuelve ahora la ecuación:

Deshaciendo ahora el cambio de variable:

Teniendo en cuenta que el cambio que hicimos fue :



Escribe un comentario o lo que quieras sobre Ecuación diferencial de Bernoulli (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!