x
1

Equilibrio inestable



El equilibrio mecánico es un estado estacionario en el que se cumple alguna de estas dos condiciones:

La segunda definición es más general y útil, especialmente en mecánica de medios continuos.

Como consecuencia de las leyes de la mecánica, una partícula en equilibrio no sufre aceleración lineal ni de rotación, pero puede estar moviéndose a velocidad uniforme o rotar a velocidad angular uniforme. Esto es ampliable a un sólido rígido.

Las ecuaciones necesarias de equilibrio mecánico son:

Un sólido rígido está en equilibrio si está en equilibrio de traslación y de rotación.

Se distingue un tipo particular de equilibrio mecánico llamado equilibrio estático que correspondería a una situación en que el cuerpo está en reposo, con velocidad cero: una hoja de papel sobre un escritorio estará en equilibrio mecánico y estático, un paracaidista cayendo a velocidad constante, dada por la velocidad límite estaría en equilibrio mecánico pero no estático.

Tal como se ha expuesto en la sección anterior, dado un sólido una condición necesaria para que este sólido esté en equilibrio mecánico es que la suma de reacciones y el momento resultante de estas reacciones sea cero. Si el sólido es indeformable la condición además de necesaria es suficiente, sin embargo, para ciertos sólidos deformables la condición de que la suma de fuerzas y momentos se anule puede no ser suficiente. En ese último caso además deben satisfacerse localmente las ecuaciones diferenciales de equilibrio:

Donde:

Las condiciones anteriores también son aplicables a un fluido y para la mayoría de fluidos admiten las ecuaciones anteriores son equivalentes a una forma más simple.

La definición anterior, basada en fuerzas, no es fácilmente generalizable a los medios continuos, ni proporciona información sobre uno de los aspectos más importantes del estado de equilibrio: la estabilidad. Para este tipo de sistemas lo más cómodo es usar la segunda definición, basada en la energía potencial; debido a la relación fundamental entre fuerza y energía, ambas son equivalentes. Además, resulta más natural definir el equilibrio estable. Si la función de energía potencial es diferenciable, entonces los puntos de equilibrio coincidirán con los puntos donde ocurra un máximo o un mínimo locales de la energía potencial.

El análisis de la estabilidad del equilibrio puede llevarse a cabo estudiando los mínimos y máximos locales (extremos locales) de la función de energía potencial.

Un resultado elemental del análisis matemático dice una condición necesaria para la existencia de un extremo local de una función diferenciable es que todas las derivadas primeras se anulen en algún punto. Para determinar problemas unidimensionales, comprobar si un punto de equilibrio es estable, inestable o indiferente implica verificar las derivadas segundas de la energía potencial:

Para problemas bidimensionales y tridimensionales (o más generalmente n-dimensionales) la discusión anterior de la estabilidad se hace más complicada y requiere examinar la forma cuadrática Q(x1,...,xn) definida por la matriz hessiana de la energía potencial:



Escribe un comentario o lo que quieras sobre Equilibrio inestable (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!