x
1

Espacio métrico



En matemática, un espacio métrico es un conjunto que lleva asociada una función distancia, es decir, que esta función está definida sobre dicho conjunto, cumpliendo propiedades atribuidas a la distancia, de modo que para cualquier par de puntos del conjunto, estos están a una cierta distancia asignada por dicha función.

En particular, cualquier espacio métrico será, además, un espacio topológico porque cualquier función de distancia definida sobre un conjunto dado induce una topología sobre dicho conjunto. Se trata de la topología inducida por las bolas abiertas asociadas a la función distancia del espacio métrico.

Formalmente, un espacio métrico es un conjunto (a cuyos elementos se les denomina puntos) con una función distancia asociada (también llamada una métrica) (donde es el conjunto de los números reales). Decir que es una distancia sobre es decir que para todo , , en , esta función debe satisfacer las siguientes condiciones o propiedades de una distancia:

De estos también se deduce:

(no negatividad)

Sea un espacio métrico, y sean y un punto de y un número real positivo o cero, respectivamente:

La distancia del espacio métrico induce en una topología, y por tanto el espacio es, a su vez, un espacio topológico al tomar como subconjuntos abiertos para la topología a todos los subconjuntos que cumplen

Esto es a todos los subconjuntos para los cuales cualquier punto en es el centro de alguna bola de radio positivo totalmente incluida en , o lo que es lo mismo: U no tiene puntos en la frontera; no tiene frontera.

Dicha topología se denomina topología inducida por en .

Podemos entonces interpretar intuitivamente que un conjunto abierto es entonces una parte que tiene un cierto "espesor" alrededor de cada uno de sus puntos.

Un subespacio métrico de un espacio métrico es subespacio topológico del espacio topológico , donde es la topología en inducida por . Es decir, hereda de la topología inducida por .

Un entorno de un punto de un espacio métrico no es más que un subconjunto de forma que exista un tal que la bola abierta . El conjunto es base de la topología inducida por , y también es base de entornos de dicha topología. Como es denso en , resulta entonces que también es base de entornos de la topología inducida por . En consecuencia, todo espacio métrico cumple el Primer Axioma de Numerabilidad.

Todo espacio métrico es espacio de Hausdorff. Además, al igual que ocurre en espacios pseudométricos, para los espacios métricos son equivalentes las siguientes propiedades: ser espacio de Lindelöf, cumplir el Primer Axioma de Numerabilidad y ser separable.

La propiedad 1 () se sigue de la 4 y la 5. Algunos autores usan la recta real extendida y admiten que la distancia tome el valor . Cualquier métrica tal puede ser reescalada a una métrica finita (usando o ) y los dos conceptos de espacio métrico son equivalentes en lo que a topología se refiere. Una métrica es llamada ultramétrica si satisface la siguiente versión, más fuerte, de la desigualdad triangular:

Si se elimina la propiedad 3, se obtiene un espacio pseudométrico. Sacando, en cambio, la propiedad 4, se obtiene un espacio quasimétrico. No obstante, perdiéndose simetría en este caso, se cambia, usualmente, la propiedad 3 tal que ambas y son necesarias para que e se identifiquen. Todas las combinaciones de lo anterior son posibles y referidas por sus nomenclaturas respectivas (por ejemplo como quasi-pseudo-ultramétrico).

Un espacio métrico se dirá totalmente acotado si y solamente si cumple la siguiente propiedad:

tal que

Se cumple que todo espacio totalmente acotado es también acotado. Además, todo compacto es totalmente acotado. Esta propiedad es útil precisamente para demostrar compacidad, pues se tiene que existe equivalencia entre ser compacto y ser totalmente acotado y completo. De hecho, para muchas demostraciones es precisamente esta caracterización de compacidad la que se utiliza.

Entonces es una métrica en , llamada métrica discreta y es un espacio métrico. se llama espacio discreto; ver Análisis real de Haaser y Sullivan.

expresa (sin ninguna referencia a una operación en los reales positivos, |x - y| es la distancia allí) el hecho que d(x, -) es función corta (luego uniforme, luego continua). d: x - > d(x,-) es una isometría.

Un espacio topológico se dice que es metrizable cuando existe una distancia cuya topología inducida sea precisamente la topología .

Un problema fundamental en Topología es determinar si un espacio topológico dado es o no metrizable. Existen diversos resultados al respecto.

Todo espacio topológico regular que cumpla el segundo axioma de numerabilidad es metrizable.

Todo espacio regular con una base numerable localmente finita es metrizable.

Todo espacio metrizable tiene una base numerable localmente finita.

Todo espacio metrizable es paracompacto.

Un espacio topológico es metrizable si y solo si es paracompacto y localmente metrizable.

Un espacio topológico completamente separable es metrizable si y solo si es regular.


English Version / Versión en Inglés > Metric space


Escribe un comentario o lo que quieras sobre Espacio métrico (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!