x
1

Función inyectiva



En matemáticas, una función:

es inyectiva, uno a uno, si a elementos distintos del conjunto (dominio) les corresponden elementos distintos en el conjunto (codominio) de , es decir, cada elemento del conjunto tiene a lo sumo una preimagen en , o, lo que es lo mismo, en el conjunto no puede haber dos o más elementos que tengan la misma imagen.

Por ejemplo, la función

no es inyectiva pues el valor 4 puede obtenerse como y pero si el dominio se restringe a los números reales positivos (obteniendo así una nueva función ) entonces sí se obtiene una función inyectiva.

Sea una función cuyo dominio es el conjunto , se dice que la función es inyectiva si para todo y en , si entonces , esto es implica . Equivalentemente, si entonces . Simbólicamente,

que es equivalente a su contrarrecíproco

Para probar que una función no es inyectiva, basta con hallar dos valores distintos del dominio, cuyas imágenes en el codominio son iguales.

Si y son subconjuntos de , geométricamente, una función es inyectiva si su gráfica nunca es intersectada por una recta horizontal más de una vez. Este principio es conocido como la prueba de la línea horizontal.[1]

Dados dos conjuntos y , entre los cuales existe una función inyectiva tienen cardinales que cumplen:

Si además existe otra aplicación inyectiva , entonces puede probarse que existe una aplicación biyectiva entre A y B.

Dada una función diferenciable con continuidad sobre un dominio del espacio euclídeo n-dimensional, pueden establecerse condiciones necesarias y suficientes para decidir cuándo esta función es inyectiva. El teorema de la función inversa da una condición no suficiente para que una función diferenciable sea localmente inyectiva:

donde:

Esta condición no es condición suficiente para garantizar la inyectividad de la función (de hecho tampoco es condición necesaria). Para encontrar condiciones suficientes se define el vector desplazamiento asociado a la función como el siguiente campo vectorial:

Esta función se interpreta como la diferencia entre la posición inicial de un punto y la posición final de su imagen. Puede demostrarse que existe una constante si se cumple:

Donde:

Entonces la función es [globalmente] inyectiva, puede demostrarse que si el dominio es convexo, mientras que un dominio no convexo requiere .



Escribe un comentario o lo que quieras sobre Función inyectiva (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!