x
1

Onda triangular



La onda triangular es un tipo de señal periódica que presenta unas velocidades de subida y bajada (Slew Rate) constantes. Lo más habitual es que sea simétrica, es decir que, los tiempos de subida y bajada son iguales.

La onda triangular tiene un contenido en armónicos muy bajo, lo que concuerda con su parecido a una onda senoidal. Tanto matemática como físicamente se puede obtener integrando en el tiempo una onda cuadrada: los niveles constantes alto y bajo de dicha onda se convierten en las pendientes (constantes) de los flancos de subida y bajada de la onda triangular.

Es posible aproximar la señal onda triangular con síntesis aditiva sumando los armónicos impares de la fundamental mientras se multiplican cada otros armónicos singulares por -1 (o, equivalente, cambiando su fase por π) y multiplicando la amplitud de los armónicos por uno sobre la raíz de su número modal , n, (la cual es equivalente a unos sobre el cuadrado de su frecuencia relativa a la fundamental).

Lo arriba expuesto puede ser descrito matemáticamente como lo siguiente:

Donde N es el número de armónicos que se incluyen en la aproximación, t es la variable independiente (p.e. tiempo para ondas sonoras), y i es la etiqueta armónica que está relacionada con el número modal por .

Esta infinita Serie de Fourier converge en la señal onda triangular como N que tiende a infinito.

Las ondas triangulares tienen aplicaciones destacadas, tales como:



Escribe un comentario o lo que quieras sobre Onda triangular (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!