x
1

Radiación de microondas



Se denomina microondas a las ondas electromagnéticas; generalmente entre 300 MHz y 30 GHz,[1]​ que supone un período de oscilación de 3 s (3×10−9 s) a 33 s (33×10−12 s) y una longitud de onda en el rango de 10 mm a 1 m. Otras definiciones, por ejemplo las de los estándares IEC 60050 y IEEE 100 sitúan su rango de frecuencias entre 1 GHz y 30 GHz, es decir, longitudes de onda de entre 30 centímetros a 10 milímetros.

El rango de las microondas está incluido en las bandas de radiofrecuencia, concretamente en las de UHF (ultra-high frequency - frecuencia ultra alta) 0,3-3 GHz, SHF (super-high frequency - frecuencia súper alta) 3-30 GHz y EHF (extremely-high frequency - frecuencia extremadamente alta) 30-300 GHz. Otras bandas de radiofrecuencia incluyen ondas de menor frecuencia y mayor longitud de onda que las microondas. Las microondas de mayor frecuencia y menor longitud de onda —en el orden de milímetros— se denominan ondas milimétricas.

La existencia de ondas electromagnéticas, de las cuales las microondas forman parte, fueron predichas por Maxwell en 1864 a partir de sus famosas Ecuaciones de Maxwell. En 1888, Heinrich Rudolf Hertz fue el primero en demostrar la existencia de ondas electromagnéticas mediante la construcción de un aparato para generar y detectar ondas de radiofrecuencia.

Las microondas pueden ser generadas de varias maneras, generalmente divididas en dos categorías: dispositivos de estado sólido y dispositivos basados en tubos de vacío. Los dispositivos de estado sólido para microondas están basados en semiconductores de silicio o arseniuro de galio, e incluyen transistores de efecto campo (FET), transistores de unión bipolar (BJT), diodos Gunn y diodos IMPATT. Se han desarrollado versiones especializadas de transistores estándar para altas velocidades que se usan comúnmente en aplicaciones de microondas.

Los dispositivos basados en tubos de vacío operan teniendo en cuenta el movimiento balístico de un electrón en el vacío bajo la influencia de campos eléctricos o magnéticos, entre los que se incluyen el magnetrón,[2]​ el klistrón, el TWT y el girotrón.

Proviene del prefijo «Micro-» (del griego μικρό [mikró]) que significa «pequeño» y la palabra «ondas». Es decir, las microondas son «pequeñas ondas».

Una de las aplicaciones más conocidas de las microondas es el horno de microondas, que usa un magnetrón para producir ondas a una frecuencia de aproximadamente 2,45 GHz. Estas ondas hacen vibrar o rotar las moléculas de agua, lo cual genera calor. Debido a que la mayor parte de los alimentos contienen un importante porcentaje de agua, pueden ser fácilmente cocinados de esta manera.

En telecomunicaciones, las microondas son usadas en radiodifusión, ya que estas pasan fácilmente a través de la atmósfera con menos interferencia que otras longitudes de onda mayores. También hay más ancho de banda en el espectro de microondas que en el resto del espectro de radio. Usualmente, las microondas son usadas en programas informativos de televisión para transmitir una señal desde una localización remota a una estación de televisión mediante una camioneta especialmente equipada. Protocolos 802.11g y b también usan microondas en la banda ISM, aunque la especificación 802.11a usa una banda ISM en el rango de los 5 GHz. La televisión por cable y el acceso a Internet vía cable coaxial usan algunas de las más bajas frecuencias de microondas. Algunas redes de telefonía celular también usan bajas frecuencias de microondas.

En la industria armamentística, se han desarrollado prototipos de armas que utilicen la tecnología de microondas para la incapacitación momentánea o permanente de diferentes enemigos en un radio limitado.[3]

La tecnología de microondas también es utilizada por los radares, para detectar el rango, velocidad, información meteorológica y otras características de objetos remotos; o en el máser, un dispositivo semejante a un láser pero que trabaja con frecuencias de microondas.

Las cámaras de RF ejemplifican el gran cambio que recientemente ha surgido en este tipo de tecnologías. Desempeñan un papel importante en el ámbito de radar, detección de objetos y la extracción de identidad mediante el uso del principio de imágenes microondas de alta resolución, que consiste, esencialmente, en un transmisor de impulsos para iluminar la tarjeta, un auto-adaptador aleatorio de fase seguido por un receptor de microondas que produce un holograma a través del cual se lee la información de la fase e intensidad de la tarjeta de radiación.

Al inicio, la tecnología de microondas, fue construyendo dispositivos de guía de onda: llamados "fontaneros". Luego surgió una tecnología híbrida:

Para que luego los componentes discretos se construyeran en el mismo sustrato que las líneas de transmisión. La producción en masa y los dispositivos compactos:

Pero existen algunos casos en los que no son posibles los dispositivos monolíticos:




Escribe un comentario o lo que quieras sobre Radiación de microondas (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!