x
1

Reactor químico



Un reactor químico es un equipo en cuyo interior tiene lugar una reacción química, diseñado para maximizar la conversión y la selectividad de esa reacción con el menor coste posible. Si la reacción química es catalizada por una enzima purificada o por el organismo que la contiene, se habla de biorreactores. El diseño de un reactor químico requiere conocimientos de termodinámica, cinética química, transferencia de masa y energía, mecánica de fluidos y tener en cuenta los costos. Por lo general se busca conocer el tamaño y el tipo de reactor, así como el método de operación. Además, con base en los parámetros de diseño se espera poder predecir con alguna certidumbre la conducta de un reactor ante ciertas condiciones; por ejemplo, un salto en escalón en la composición de entrada. Dentro de la termodinámica utilizada hay que tener en cuenta el calor de reacción, que es el calor absorbido o desprendido durante la reacción. Esto determina la extensión máxima posible de reacción. Si el cambio entálpico es menor a cero, entonces la reacción es exótermica por lo que desprende calor. Si el cambio entálpico es mayor a cero, entonces la reacción es endotérmica por lo que absorbe calor.

Existen varias formas de clasificarlos:

Idealmente, pueden suponerse tres tipos de reactores homogéneos:

Los reactores batch trabajan en estado no estacionario y el más sencillo sería un tanque agitado. Este reactor tiene la ventaja de que su costo de instrumentación es bajo, además de ser flexible en su uso (se le puede detener de modo fácil y rápido). Tiene la desventaja de un elevado costo en su funcionamiento y de mano de obra debido a la gran cantidad de tiempo que se pasa parado debido a la carga, descarga y limpieza; Además no siempre es posible implementar un sistema de control adecuado. Este reactor suele usarse en pequeñas producciones o pruebas piloto. Asumiendo que en un reactor batch la composición es uniforme en cualquier instante y basándose en la selección de un componente limitante; Las ecuaciones de diseño para este tipo de reactor en estado estacionario se deducen de la siguiente forma (se toma como ejemplo la especie molar A):

[1]

Siendo V el volumen del fluido en el reactor y la velocidad de reacción para el componente limitante. Evaluando los términos de la ecuación anterior se puede calcular el tiempo de residencia necesario para alcanzar la conversión deseada.

donde X representa la conversión lograda y está relacionada con la concentración, están relacionadas por:

X toma un valor entre 0 y 1

Para aquellas reacciones en las que el volumen de la mezcla cambia proporcionalmente a la conversión la ecuación se transforma en

Siendo una constante representativa del cambio del volumen en relación con la conversión, en términos matemáticos:

para cambios en otros componentes se tiene:

Aparte del tiempo de reacción, en un proceso industrial debe añadirse el tiempo de carga, descarga y limpieza para un este tipo de reactores y en general procesos en lotes.

El balance de energía para este tipo de reactor ofrece 3 posibilidades que dependen del modo de operación y de las exigencias de producción requeridas.

Al mencionar servicio se hace referencia a los servicios térmicos, como ejemplo se puede mencionar el sistema de calentamiento por vapor, o el uso de un intercambiador de chaqueta en un recipiente.

Estos reactores trabajan en estado estacionario, es decir, que sus propiedades no varían con el tiempo. Este modelo ideal supone que la reacción alcanza la máxima conversión en el instante en que la alimentación entra al tanque. Es decir, que en cualquier punto de este equipo las concentraciones son iguales a las de la corriente de salida. Además para este tipo de reactor se considera que la velocidad de reacción para cualquier punto dentro del tanque es la misma y suele evaluarse a la concentración de salida. Para este reactor suele asumirse que existe un mezclado perfecto, en la práctica esto no es así, pero puede crearse un mezclado de alta eficiencia que se aproxima a las condiciones ideales.

El balance de materia para este reactor en términos molares es el siguiente.

representa el flujo molar de la especie indicada en el subindice, está relacionado con el flujo volumétrico

suponiendo que el sistema opera en estado estacionario, el cambio de concentración molar tiende a cero.

En términos de conversión molar y tomando como ejemplo la especie reaccionante A de coeficiente estequiométrico igual a 1. El balance se reduce a

una posterior simplificación matemática muestra:

El diseño de operaciones tanto en sistemas CSTR como en reactores PFR usualmente es deseado determinar el “tiempo de residencia” (representado por la letra y dimensionalmente se mide en segundos ) y el factor de escala (representado por la letra S), este último expresado como el volumen por unidad de masa del producto, los problemas de optimización se enfocan en reducir tanto como S, esto se logra manipulando la relación de concentración entre los reactantes.

para CSTR

Este tipo de reactor resulta muy atractivo para estudios cinéticos debido a su simplicidad del cálculo característica.

La configuración óptima para este tipo de reactor depende de parámetros. La inversión en capital en equipo es importante, pero los costos de energía y el costo del producto es factor determinante, el uso de reactores en batería es muy común en la industria debido a que suele ser rentable.

Estos reactores trabajan en estado estacionario. Es decir, las propiedades en un punto determinado del reactor son constantes con el tiempo. Este modelo supone un flujo ideal de pistón, y la conversión es función de la posición. En este tipo de reactor la composición del fluido varia de un punto a otro a través de la dirección del flujo, esto implica que el balance para un componente dado de la o las reacciones químicas implicadas o debe realizarse en un elemento diferencial de volumen.

Balance de materia:

pero

y

A fin de encontrar la ecuación de diseño, es necesario integrar la expresión, considerando que la velocidad de alimentación es constante, sustituyendo las ecuaciones anteriores en el balance general, agrupando términos y después integrando, se obtiene:

Se puede observar que, a diferencia de la ecuación de diseño para el reactor MFR, la velocidad de reacción es variable, por lo general para mecanismos de reacción complejos suelen usarse métodos de integración gráfica, como series de Simpson, método de sumas de trapecios, cuadratura gausiana, etc., el uso de software computacional suele ser útil para estos procedimientos.

Respecto al balance de energía, también se basa en un modelo diferencial.

Existe un tipo especial de reactores que debido a su naturaleza obedece leyes cinéticas diferentes, además de que por su complejidad los balances de materia y energía son más complejos, la diferencia radica en el número de fases físicas involucradas, los mecanismos de transferencia tanto de calor como de energía son más complejos debido a que están presentes más de un mecanismo, pudiendo ser de naturaleza convectiva o conductiva.

Suelen ser de dos tipos: fluidizado o de lecho empacado, la elección depende de la reacción de interés y del mecanismo cinético observado

Los reactores de lecho fluidizado poseen las siguientes propiedades:


El reactor de lecho empacado posee las siguientes características:

Balance de materia: Al igual que el PFR, el balance es diferencial, además se toma en cuenta la difusión radial, el balance se realiza tomando en cuenta una geometría radial.

[2]

Balance de energía:

En muchas situaciones estos modelos ideales son válidos para casos reales, en caso contrario se habrán de introducir en los balances de materia, energía y presión términos que reflejen la desviación de la idealidad. Si por ejemplo la variación de las propiedades se debe a fenómenos de transporte de materia o calor se pueden introducir las leyes de Fick o Fourier respectivamente. No todas las moléculas pasan el mismo tiempo en el reactor. No hay una mezcla perfecta como en el <<reactor ideal>>. Ocurre que la conversión real es más baja que la conversión en el reactor ideal. Esto depende de la función de distribución de tiempos de residencia. Hay una gran variedad de modelos matemáticos que surgen de simplificaciones que son de 1 parámetro, dos parámetros y más parámetros. Para medir las concentraciones promedios espaciales en distintos tiempos se utilizan trazadores como colorantes. En PFR ideal, ingresa la mezcla y a medida que va escurriendo va cambiando la concentración. En PFR no ideal va cambiando la concentración y además va cambiando de manera radial.




Escribe un comentario o lo que quieras sobre Reactor químico (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!