Recubrimiento o revestimiento (o por su designación en inglés: coating) es un objeto que se vuelve a cubrir de sustrato. En muchos casos son realizados para mejorar alguna(s) propiedades o cualidades de la superficie del sustrato, tales como aspecto, adhesión, características de mojado, resistencia a la corrosión, resistencia al desgaste, y resistencia a las ralladuras entre muchas otras. En otras ocasiones, particularmente en procesos de impresión y fabricación de dispositivos semiconductores (en los cuales el sustrato es un disco de material semiconductor), el recubrimiento es una parte esencial para la funcionalidad del producto terminado.
Los recubrimientos son aplicados mediante procesos en forma de líquidos, gases o sólidos. Los recubrimientos pueden ser medidos y ensayados para verificar sus características y espesor de la película utilizando tarjetas para observación visual del color, opacidad o contraste (paletas o drawdown card).
Los recubrimientos pueden servir para permitir que la superficie tratada cumpla una serie de funciones. Por ejemplo:
Esta lista contiene un resumen de las técnicas de recubrimiento utilizadas en el ámbito de la ciencia de materiales. Las técnicas se pueden clasificar de la siguiente forma:
El científico sebastian gonzalez postulo : El procedimiento consiste en la fusión por láser de un polvo metálico sobre un substrato también metálico formándose una cara en la que ambos están mezclados. El aporte de material puede llevarse a cabo a la par que la aplicación del láser o como deposición previa. Si se predeposita el material antes de fundir, al aplicar el láser, el material fundido más superficial se deslizará sobre el no fundido hasta llegar al substrato que se funde actuando como disipador térmico permitiendo un endurecimiento rápido del recubrimiento. Si se aporta recubrimiento junto con el haz láser, una parte de la energía del haz funde las partículas en suspensión y otra el substrato, por lo que la velocidad de enfriamiento es del orden de los 104 K/s y la difusión del aporte en el substrato es incluso menor que si se predeposita. Esto crea gradientes de temperatura entre el frente de material fundido y el centro que provocan el movimiento del fluido y por tanto la homogeneización del recubrimiento.
Podemos distinguir dos tipos principales de láser según la geometría de la pieza y el espesor del recubrimiento:
Bastan 0.1 s para que el revestimiento alcance la homogeneidad y solidifique, formando una microestructura de grano fino y de características muy superiores a las formadas en otros procesos de recubrimiento.
Los parámetros del haz que condicionan en el proceso de recubrimiento son:
Debe adecuarse a la absortividad del material de aporte de modo que el proceso sea razonablemente eficiente.
La energía mínima necesaria para fundir el recubrimiento sobre la superficie base es de unos 100W/mm2 lo que representa una potencia mínima del haz de 2 kW. Una falta de potencia provoca una fusión incompleta del material y un recubrimiento débil, un exceso de potencia da lugar a una fusión excesiva del substrato base y la disolución en este del material de aporte. Un haz continuo mejora la tasa de cobertura del material.
Para evitar posibles daños por salpicaduras se utilizan espejos en vez de lentes al permitir conseguir una mayor separación del haz aumentando la longitud focal. Se emplean espejos oscilantes para conseguir un haz de distribución de intensidad uniforme ya que influye en el espesor del recubrimiento. Patrón de calentamiento: La fuente de energía más apropiada para grandes recubrimientos de espesor uniforme es aquella con una distribución amplia y regular del calor. Son apreciables los efectos transitorios en el inicio y final del proceso lo quer hace necesario un precalentamiento del material.
La velocidad de recubrimiento es generalmente mayor que para tratamientos térmicos superficiales ya que el material se aporta en forma de polvo. La velocidad transversal en inversamente proporcional al espesor del recubrimiento.
La condición que han de cumplir el material de aporte y la pieza base para poder aplicar esta técnica es que sean soldables. Debido a la rápida solidificación del recubrimiento se forma entre este y la base una fuerte unión metálica aunque con la mínima mezcla (< 5%) del material de aporte en el substrato base Los materiales de base más comunes son aceros al carbono, aleados, de herramienta e inoxidables. También son válidas las aleaciones de aluminio, magnesio, hierro y superaleaciones de base níquel. Los materiales de aporte más comunes son aleaciones de cobalto, cromo, carbono, acero, silicio y níquel. Se añaden también elementos con un radio atómico grande como el tungsteno y el molibdeno para dar dureza a la estructura reticular. También se realizan recubrimientos en los que el material de base y el de aporte pertenecen a distintas categorías, aunque en estos casos las condiciones de proceso son muy críticas para conseguir un enlace suficientemente fuerte.
Se utiliza en caso de que el substrato base o el material de aporte sean susceptibles de oxidación. El gas más utilizado es el argón aunque también se puede emplear nitrógeno. Uno de los problemas más críticos en el proceso son los descuidos a la hora de diseñar la geometría del aporte de material y los sistemas de conducción de los gases de protección y transporte de polvo de aporte.
Es crítico en caso de necesitar cubrir grandes superficies ya que optimiza la velocidad de proceso.
Hay dos motivos principales para ello: Evitar el agrietamiento del recubrimiento e incrementar la disolución del recubrimiento en el substrato por motivos de composición. El precalentamiento se lleva a cabo en hornos y permite utilizar como substrato muchas más aleaciones férreas que de no realizarse. También se realiza un enfriamiento controlado de la pieza en caso de riesgo de agrietamiento.Tratamiento térmico posterior: Se hace necesario al depositar recubrimientos muy extensos y de espesor considerable, en los que quedarán tensiones residuales.
Los recubrimientos pueden ser granallados tras la deposición para inducir esfuerzos residuales de compresión y mejorar la resistencia a la fatiga. Tras este tratamiento la pieza cumple prácticamente con las especificaciones dimensionales y de rugosidad requeridas.
Se registran las señales de la zona de interacción láser-recubrimiento, de las que se pueden obtener datos sobre los enlaces entre el recubrimiento y la pieza, porosidad, dureza del recubrimiento, espesor y defectos en el substrato.
Ventajas del recubrimiento por láser:
Desventajas del recubrimiento por láser:
Método de fabricación de películas delgadas de materiales diversos. Consiste en la aplicación de pulsos cortos de alta energía sobre un material de aporte, generalmente cerámico, encerrado en una cámara de alto vacío. El material cerámico se desprende y deposita sobre un substrato recubriéndolo como una fina película. El número de pulsos se puede ajustar para conseguir distintos espesores de material. En un caso ideal los pulsos del láser deberían tener una longitud de onda corta, es decir, en el espectro ultravioleta. Por lo tanto para estas aplicaciones se utiliza un láser excímero.Bastan pulsos de varios nanosegundos para un desprendimiento no térmico del material de aporte sin cambios en su composición. Es de gran interés especialmente en la fabricación de superconductores a alta temperatura y materiales magnéticos.
Se pueden clasificar básicamente en dos tipos: chapas de madera y recubrimientos plásticos. Cuando se utilizan chapas de madera se habla de tableros rechapados y cuando se utilizan los recubrimientos plásticos se habla de tableros recubiertos.
Los recubrimientos se emplean principalmente para el ennoblecimiento de los tableros de partículas y de fibras. Se deberían recubrir las dos caras del tablero con el mismo recubrimiento o con revestimientos de comportamiento similar para evitar que se produzcan descompensaciones en el tablero que puedan provocar su alabeo.
Escribe un comentario o lo que quieras sobre Recubrimiento (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)