hubble.nasa.gov
hubblesite.org
telescopiohubble.com
El telescopio espacial Hubble (en inglés Hubble Space Telescope o HST por sus siglas), o simplemente Hubble, es un telescopio que orbita en el exterior de la atmósfera, en órbita circular alrededor del planeta Tierra a 593 kilómetros sobre el nivel del mar, con un período orbital entre 96 y 97 minutos. Bautizado en honor del astrónomo Edwin Hubble, fue puesto en órbita el 24 de abril de 1990 en la misión STS-31 como un proyecto conjunto de la NASA y de la Agencia Espacial Europea, inaugurando el programa de Grandes Observatorios. El Hubble puede obtener imágenes con una resolución óptica mayor de 0,04 segundos de arco.[cita requerida]
La ventaja de disponer de un telescopio más allá de la distorsión que produce la atmósfera terrestre es esencialmente que de esta manera se pueden eliminar los efectos de la turbulencia atmosférica. Además, la atmósfera absorbe fuertemente la radiación electromagnética en ciertas longitudes de onda, especialmente en el infrarrojo, disminuyendo la calidad de las imágenes e imposibilitando la adquisición de espectros en ciertas bandas caracterizadas por la absorción de la atmósfera terrestre. Los telescopios terrestres se ven también afectados por factores meteorológicos (presencia de nubes) y la contaminación lumínica ocasionada por los grandes asentamientos urbanos, lo que reduce las posibilidades de ubicación de telescopios terrestres.
Una de las características del Hubble era la posibilidad de ser visitado por astronautas en las llamadas misiones de servicio (SM, por sus siglas en inglés). Durante las misiones de servicio se podían arreglar elementos estropeados, instalar nuevos instrumentos y elevar la órbita del telescopio. Se realizaron cinco misiones de servicio (SM1, SM2, SM3A, SM3B y SM4). La última tuvo lugar en mayo de 2009 y en ella se produjo la mejora más drástica de la capacidad instrumental del Hubble, al instalarse dos nuevos instrumentos (WFC3 y COS), repararse otros dos (ACS y STIS) y mejorar otro más (FGS). Su sucesor científico será el telescopio espacial James Webb (JWST), cuyo lanzamiento está previsto para el año 2021.
El Hubble tiene una masa de en torno a 11 toneladas; es de forma cilíndrica, con una longitud de 13,2 m y un diámetro máximo de 4,2 m. El coste del Hubble ascendió (en 1990) a 2800 millones de dólares estadounidenses. Inicialmente un fallo en el pulido del espejo primario del telescopio fabricado por Perkin Elmer produjo imágenes ligeramente desenfocadas debido a que su borde exterior era más plano de lo esperado (solo cuatro centésimas de milímetro) causando aberraciones esféricas. Tras esta terrible negligencia se tuvo que esperar tres años para que un transbordador tripulado (STS-61 ) pudiera instalar un sistema de corrección óptica capaz de corregir el defecto del espejo primario, denominado COSTAR (COSTAR, iniciales en inglés de óptica correctora como reemplazo axial del telescopio espacial) alcanzándose las especificaciones de resolución inicialmente previstas.
El Hubble es un telescopio de tipo reflector y su espejo primario tiene un diámetro de 2,4 m. Para la exploración del cielo incorpora en la actualidad cuatro instrumentos con capacidad de obtener imágenes y espectros, un espectrógrafo y tres sensores de guiado fino que pueden actuar como interferómetros. Para la generación de electricidad se emplean dos paneles solares que alimentan las cámaras, los cuatro motores empleados para orientar y estabilizar el telescopio, los equipos de refrigeración de los instrumentos y la electrónica del telescopio. Así mismo, el Hubble dispone de baterías recargables a partir de los paneles solares que le permiten utilizar la electricidad almacenada cuando la Tierra eclipsa el Sol, o cuando la orientación de los paneles solares no es la apropiada.
Ya desde su diseño, el Hubble se concibió como un telescopio espacial que podría ser visitado por el transbordador espacial. Las razones para esa capacidad son:
La primera misión de servicio se llevó a cabo con el transbordador Endeavour (STS-61) en diciembre de 1993 y tuvo una duración de diez días. El plan de la SM1 estuvo fuertemente condicionado por la aberración esférica detectada tres años antes en el espejo primario. Las dos reparaciones más importantes fueron la sustitución del Fotómetro de Alta Velocidad (HSP, por sus iniciales en inglés) por la óptica correctora COSTAR y la instalación de la Cámara Planetaria y de Gran Angular 2 (WFPC2) en el lugar de la cámara original (WFPC). El propósito de COSTAR era el conseguir el enfoque correcto de los otros tres instrumentos axiles originales del telescopio (la Cámara de Objetos Débiles o FOC, el Espectrógrafo de Objetos Débiles o FOS y el Espectrógrafo Goddard de Alta Resolución o GHRS). La WFPC2 ya incorporaba su propia corrección del efecto de la aberración esférica del espejo primario. Además, se instalaron dos nuevos paneles solares, cuatro giroscopios, dos unidades eléctricas de control, dos magnetómetros y un nuevo ordenador de a bordo. Por último, la órbita del HST fue elevada por primera vez desde su lanzamiento.
La segunda misión de servicio se llevó a cabo con el transbordador Discovery (STS-82) en febrero de 1997. En ella se reemplazaron dos instrumentos preexistentes (el GHRS y el FOS) por otros dos nuevos, el Espectrógrafo de Imágenes del Telescopio Espacial (STIS) y la Cámara y Espectrómetro Multi-Objeto del Infrarrojo Cercano (NICMOS), se sustituyó un sistema de almacenamiento de datos en cinta por uno de estado sólido, se reparó el aislamiento térmico y se elevó la órbita del telescopio. El sistema de refrigeración de NICMOS no funcionó de la manera especificada y eso hizo que su vida útil se redujera de 4 años y medio a 2 años.
La tercera misión de servicio se llevó a cabo con el Transbordador espacial Discovery (STS-103) en diciembre de 1999.
La cuarta misión de servicio se llevó a cabo con el transbordador Columbia (STS-109) en marzo de 2002.
La quinta misión de servicio se llevó a cabo con el transbordador Atlantis (STS-125) en mayo de 2009. Esta fue la última misión de servicio y duró 11 días, participaron en ella siete tripulantes con el objetivo de reparar y añadir nuevos instrumentos al telescopio.
La quinta misión de mantenimiento, prevista para 2006, se canceló inicialmente pero posteriormente se reinstauró. Con ella, está previsto que el Hubble alcanzará el final de su vida útil hasta mediados de la década de 2010. La fecha exacta del fin del Hubble es incierta, ya que depende de la vida de los giróscopos, baterías y el frenado atmosférico (corregible). La NASA prevé lanzar en 2021 un telescopio de nueva generación (el telescopio espacial James Webb) para observar en el infrarrojo cercano y medio. El James Webb no es un sustituto del Hubble sino un complemento, ya que observa en un rango distinto del espectro electromagnético.
El 14 de junio de 2006 la cámara avanzada para sondeos (siglas en inglés, ACS), uno de los instrumentos considerados fundamentales en el telescopio, dejó de funcionar. La causa fue un excesivo voltaje en el circuito de alimentación principal que fue subsanada con la activación del sistema de respaldo. El 30 de junio la ACS volvió a funcionar correctamente. El 31 de octubre de 2006, el Administrador de la NASA anunció la aprobación para una misión de mantenimiento. Esta misión de 11 días de duración tendrá lugar tentativamente en el otoño de 2008 y entraña la instalación de nuevas baterías, de la tercera cámara de gran angular (WFC3) y de un nuevo espectrógrafo (COS), así como la reparación de los giróscopos y posiblemente de STIS.
El 27 de enero de 2007, la ACS dejó de funcionar de nuevo debido a un cortocircuito en la misma. En principio, se pensó que el daño era irreversible para todos sus detectores. No obstante, más tarde se consiguió revivir uno de ellos (la SBC) y en la actualidad se está analizando si es posible reparar o no los otros dos (el WFC y el HRC) en la próxima misión de reparación. En la decisión final influirán los nuevos instrumentos que se instalarán en dicha misión (la WFC3 y el COS) y si es preferible reparar la ACS o STIS (existe un tiempo máximo que los astronautas pueden pasar fuera de la nave y la reparación de un instrumento lleva varias horas como mínimo). Mientras tanto, el Hubble utilizará los demás instrumentos que están disponibles para investigaciones.
El Hubble está logrando que los teóricos se replanteen algunas de sus ideas respecto a la edad del universo. De hecho, la idea actual se encuentra ante una paradoja. Los datos más recientes que ha proporcionado el Hubble, según Wilford, escritor de asuntos científicos del periódico The New York Times, «indican de manera convincente que el universo puede ser mucho más joven de lo que calculaban los científicos. Tal vez no tenga más de ocho mil millones de años», en vez de los cálculos anteriores, que le asignaban catorce mil millones aproximadamente. El problema radica en que «se da por seguro que algunas estrellas tienen unos doce mil millones de años».
No tardó en demostrarse que había valido la pena corregir el sistema óptico. En junio de 1994, la revista Time publicó que el Hubble había descubierto claros indicios en apoyo de la existencia de los agujeros negros. La NASA anunció que este había descubierto una nube de gases en forma de disco que gira a una vertiginosa velocidad. Se halla a unos 50 millones de años luz, en el centro de la galaxia M 87. Se dice que tiene una masa estimada de entre 2000 y 3000 millones de estrellas del tamaño del Sol, pero comprimidas en un espacio del tamaño del sistema solar. Los científicos calculan que el disco de gases tiene una temperatura de 10 000 grados Celsius. La única explicación que puede darse en la actualidad para este fenómeno es la existencia de una enorme fuerza gravitatoria ejercida por un mastodóntico agujero negro, en torno al cual da vueltas el disco.
El Hubble también envió imágenes extraordinarias del cometa Shoemaker-Levy 9 cuando este se dirigía en una trayectoria autodestructiva a Júpiter, donde se desintegró en julio de 1994. Las imágenes de las galaxias que envía el Hubble son de tal nitidez que un científico calificó así el trabajo: «Un ligero cambio en el espejo, un paso gigante en astronomía». Según la revista Investigación y Ciencia, en la actualidad «la resolución del Hubble duplica la del mejor instrumento instalado en Tierra, y gracias a ello puede observar con claridad un volumen de espacio mil veces mayor que otros telescopios».
La aguda visión del telescopio espacial Hubble ha desmitificado los misterios de los agujeros negros supermasivos, incluidas su abundancia e influencia en la evolución del universo. La teoría de la Relatividad General de Einstein describió las características de estos objetos colapsados por la gravedad. Su teoría demostraba un horizonte de sucesos que se tragaba a la luz lo que impedía a los telescopios mirar directamente a estos objetos de manera perenne.
El término "agujero negro" no fue adjudicado hasta sesenta años más tarde por el astrofísico John Wheeler. A principios de los años 1970s, el primer candidato a agujero negro fue Cygnus X-1, descubierto gracias a los rayos X provenientes de un material ultra caliente orbitando alrededor del agujero negro y en órbita alrededor de una estrella. El agujero negro es quince veces más masivo que nuestro sol.
En la primera mitad de la década de 1990 en Hubble comenzó a entregar evidencias de la existencia de agujeros negros masivos que pesan billones masas solares. Gracias a la habilidad del Hubble para discernir objetos opacos en medio del brillo de la vecindad estelar, el telescopio espacial logró observaciones definitivas de que los quasares (objetos muy distantes y compactos que emiten intensa radiación) habitan en núcleos de galaxias. Estas galaxias son inundadas por el brillo que emiten los quasares. El Hubble reveló que la mayoría de las galaxias que colisionan con otras galaxias en un violento proceso dan nacimiento, de acuerdo a la teoría, a agujeros negros centrales. Envuelto de gas, el agujero negro pierde parte de su material en forma de chorros de plasma que se disparan desde el centro de una galaxia, evento que fue efectivamente resuelto por el Hubble.
Posteriormente el Hubble reforzó la idea de que agujeros negros supermasivos podían ser medidos, lo cuál comprobaba las primeras observaciones de su existencia. En 1997 los astrónomos observaron el mini-quasar más cercano, el núcleo brillante de una galaxia gigante elíptica, la M87. Los astrónomos utilizaron la espectroscopía (que divide la luz de las estrellas en diferentes colores) para “pesar” a un agujero negro y verificar si la cantidad de su masa invisible excedía a la masa atribuida a las estrellas. La espectrografía del Hubble cuantificó la velocidad del gas atrapado en el campo gravitacional del centro de un agujero negro. Las velocidades extremas indicaban la presencia de una masa ultracompacta que pudo ser explicada como un agujero negro.
Los astrofísicos utilizaron las velocidades en las que las estrellas y el gas gravitan alrededor de un agujero negro, para catalogarlos en galaxias activas y galaxias pasivas. Un censo del Hubble sobre las galaxias mostró que los agujeros negros supermasivos se encuentran por lo general en el centro de las galaxias; el estudio sugiere que los agujeros negros están ligados al nacimiento y la evolución de las mismas. La idea fue reforzada gracias a las observaciones del Hubble: la masa de un agujero negro está relacionada con la masa total de la protuberancia de las estrellas en el núcleo de una galaxia. Entre más masiva sea la protuberancia estelar, más masivo es el agujero negro. Esta relación implica que existe un mecanismo de intercambio entre el crecimiento de una galaxia y su agujero negro central.
(en español)* Página en español dedicada al Telescopio Espacial Hubble Últimos descubrimientos del Telescopio Espacial Hubble
Escribe un comentario o lo que quieras sobre Telescopio espacial Hubble (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)