x
1

Wronskiano



En matemática, el wronskiano es un determinante introducido en 1812[1]​ por el matemático polaco Józef Hoene-Wroński (1776-1853) y nombrado en 1882[2]​ por el matemático escocés Thomas Muir (1844 – 1934). Se utiliza en el estudio de las ecuaciones diferenciales ordinarias, donde a veces puede ser utilizado para mostrar que un conjunto de soluciones es linealmente independiente.

Dado un conjunto de funciones que son ()-veces derivables, , el wronskiano está dado por:

El wronskiano es el determinante de la matriz construida al colocar las funciones en el primer renglón (o fila), la primera derivada de cada función en el segundo renglón, y así hasta la derivada n-1, formando así una matriz cuadrada, algunas veces llamada matriz fundamental.

En una ecuación diferencial lineal de segundo orden, el wronskiano puede ser calculado por computadora más fácilmente por la identidad de Abel.

El wronskiano puede usarse para determinar si un conjunto de funciones es linealmente independiente en un intervalo dado:

Esto es útil en muchas situaciones. Por ejemplo, si queremos verificar si dos soluciones de una ecuación diferencial de segundo orden son independientes, quizás podamos usar el wronskiano. Notése que si el wronskiano es cero uniformemente sobre el intervalo, las funciones pueden ser o no ser linealmente independientes.

Una malinterpretación común (desafortunadamente promulgada en muchos textos) es que si en cualquier lugar, implica una dependencia lineal - lo que es incorrecto. Sin embargo si ... son funciones analíticas y en todas partes, entonces ... son linealmente dependientes.

Hay un sentido en el que el wronskiano de una ecuación diferencial lineal de orden n-ésimo es el producto exterior n-ésimo. Para implementar esa idea se debe trabajar con algunas formulaciones en las que las ecuaciones diferenciales son suficientemente parecidas a vectores en el espacio: por ejemplo en el lenguaje del fibrado vectorial llevando una conexión.

El teorema es significativamente fácil de probar por medio de su segunda declaración mencionada anteriormente, siendo: Si las funciones son linealmente dependientes sobre el intervalo, entonces lo son también las columnas de la matriz wronskiana asociada (la diferenciación es una operación lineal); consecuentemente, el determinante wronskiano es cero en todos los puntos del intervalo.



Escribe un comentario o lo que quieras sobre Wronskiano (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!