La primera definición conocida de sección cónica surge en la Antigua Grecia, cerca del año 340 a. C., (Menecmo) donde fueron definidas como secciones «de un cono circular recto». Los nombres de hipérbola, parábola y elipse se deben a Apolonio de Perge.
Actualmente, las secciones cónicas pueden definirse de varias maneras; estas definiciones provienen de las diversas ramas de la matemática como la geometría analítica, la geometría proyectiva, etc.
En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas, a saber:
Si el plano pasa por el vértice del cono, se puede comprobar que:
Se denomina ecuación general de segundo grado o ecuación cuadrática general en dos variables e a una ecuación como
donde a, h, b, g, f, c son constantes reales, y al menos uno de los valores a, b, h es no nulo.
La elipse, parábola, hipérbola son curvas de segundo grado por satisfacer ecuaciones de la forma (1), pero hay curvas de segundo grado que no son secciones cónicas, para el caso: dan un punto, una recta, dos rectas, ningún punto.
Para la ecuación (1), en función de los valores de los parámetros, se tendrá:
Mediante un software se pueden representar las gráficas de la ecuación general de las cónicas. A continuación se presentan los tres casos: parábola, elipse e hipérbola.
La elipse es el lugar geométrico de los puntos del plano tales que la suma de las distancias a dos puntos fijos llamados focos es una constante positiva.
Además de los focos F y F′ con coordenadas (c;0) y (-c;0) si se encuentran sobre el eje de las abcisas respectivamente y (0;c) y (0;-c) si estos focos se encuentran sobre el eje de las coordenadas (ejes de las y) respectivamente. En una elipse se destacan los siguientes elementos:
La elipse posee la ecuación ordinaria (con centro en el origen de coordenadas): , si por otra parte el centro de la elipse tiene coordenadas tiene la siguiente expresión algebraica:
La hipérbola es el lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante y menor que la distancia entre los focos.
Tiene dos asíntotas (rectas cuyas distancias a la curva tienden a cero cuando la curva se aleja hacia el infinito). Las hipérbolas cuyas asíntotas son perpendiculares se llaman hipérbolas equiláteras.
Además de los focos y de las asíntotas, en la hipérbola se destacan los siguientes elementos:
La ecuación de una hipérbola horizontal con centro , es: .
A su vez, la de una hipérbola vertical es: .
La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco, y de una recta llamada directriz.
Además del foco (F) y de la directriz de una parábola, se destacan los siguientes elementos:
Una parábola, cuyo vértice está en el origen y su eje coincide con el de ordenadas, tiene la siguiente ecuación: , mientras que la ecuación general de una parábola centrada en sobre el eje de ordenadas es .
Las curvas cónicas son importantes en astronomía: dos cuerpos masivos que interactúan según la ley de gravitación universal, sus trayectorias describen secciones cónicas si su centro de masa se considera en reposo. Si están relativamente próximas describirán elipses, si se alejan demasiado describirán hipérbolas o parábolas.
También son importantes en aerodinámica y en su aplicación industrial, ya que permiten ser repetidas por medios mecánicos con gran exactitud, logrando superficies, formas y curvas perfectas.
Escribe un comentario o lo que quieras sobre Cónicas (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)