x
1

Ecuación de Starling



Formulada en 1896, por el fisiólogo británico Ernest Starling, la ecuación de Starling ilustra el rol de las fuerzas hidrostáticas y oncóticas (llamadas también fuerzas de Starling) en el movimiento del flujo a través de las membranas capilares. Permite predecir la presión de filtración neta para un determinado líquido en los capilares.[1]​ La ecuación es:

El coeficiente de filtración () expresa la permeabilidad de la pared capilar para los líquidos.

El coeficiente de reflexión () es el Índice de la eficacia de la pared capilar para impedir el paso de proteínas y que, en condiciones normales, se admite que es igual a 1, lo que significa que es totalmente impermeable a las mismas y en situaciones patológicas inferior a 1, hasta alcanzar el valor 0 cuando puede ser atravesado por ellas sin dificultad

Todas las presiones son medidas en milímetros de mercurio (mm Hg), y el coeficiente de filtración se mide en mililitros por minuto por milímetros de mercurio (mL·min-1·mm Hg-1). Por ejemplo:

Según la ecuación, P(Q)arteriolar=(37-1)-(25-0)=11 y P(Q) venular= (17-0)-(25-0)= -9. La filtración es por lo tanto mayor que la reabsorción. La diferencia es recuperada entonces por el sistema linfático para retornar a la circulación.

La solución a la ecuación es el flujo de agua desde los capilares al intersticio (Q). Si es positiva, el flujo tenderá a dejar el capilar (filtración). SI es negativo, el flujo tenderá a entrar al capilar (reabsorción). Esta ecuación tiene un importante número de implicaciones fisiológicas, especialmente cuando los procesos patológicos alteran de forma considerable una o más de estas variables.

La filtración glomerular se determina por:

Presión de filtración neta: determina el paso del líquido a través de la membrana glomerular, siendo igual a la presión glomerular menos la suma de la presión coloidosmótica plasmática y la presión capsular.                                       PF = PG-POG-PC



Escribe un comentario o lo que quieras sobre Ecuación de Starling (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!