La energía de fusión es la energía liberada al realizarse una reacción de fusión nuclear. En este tipo de reacción, dos núcleos atómicos ligeros se fusionan para formar un núcleo más pesado, liberándose gran cantidad de energía en el proceso, que puede ser empleada en la bomba de hidrógeno y en un futuro en la producción de energía eléctrica en un hipotético reactor. La mayoría de estudios existentes para el diseño de una central nuclear de fusión usan las reacciones de fusión para generar calor, que hará funcionar una turbina de vapor que a su vez activarán los generadores para producir electricidad, de forma similar a como ocurre actualmente en la centrales térmicas que usan combustibles fósiles o en las centrales nucleares de fisión, pero con la gran ventaja de que el impacto ambiental será considerablemente menor ya que por ejemplo, medio kilo de hidrógeno (muy abundante en la naturaleza, ya que forma parte del agua) produciría unos 35 millones de kilovatios hora.
El mayor experimento actual es el Joint European Torus (JET). En 1977 el JET produjo un pico de 16,1 MW de energía de fusión (el 65% de la energía suministrada) con una potencia de más de 10 MW sostenida durante más de 0,5 s. En junio de 2005 se anuncia la construcción del reactor experimental ITER, diseñado para producir de forma continuada más energía de fusión que la energía que se le suministra en forma de plasma.
El concepto básico de una reacción de fusión nuclear es acercar dos o más núcleos atómicos lo suficiente como para que la interacción nuclear fuerte (la fuerza que mantiene unidos protones y neutrones en un núcleo) los una para formar un núcleo mayor. Si dos núcleos ligeros se fusionan, formarán un solo núcleo con algo menos de masa que la suma de sus masas originales. La diferencia de masa se libera como energía de acuerdo a la fórmula de la equivalencia entre masa y energía E = mc2. Si los núcleos originales son suficientemente masivos, el producto resultante de la fusión será más pesado que la suma de sus masas, en cuyo caso la reacción requerirá una fuente externa de energía. La línea divisoria entre ambos tipos de fusiones, exotérmicas y endotérmicas, la establece el hierro-56. Sobre esta masa atómica, la energía será liberada por fisión nuclear; bajo ella, por fusión.
De acuerdo a los criterios de Lawson, la más sencilla y prometedora reacción de fusión es:
El Hidrógeno-2 (Deuterio) es isótopo encontrado y disponible en la naturaleza. La gran diferencia de masa entre los dos principales isótopos de Hidrógeno (Protio y el propio Deuterio) hace fácil su separación comparada con la dificultad del proceso de enriquecimiento de uranio. El Hidrógeno-3 (Tritio) también es un isótopo del Hidrógeno, pero su ocurrencia natural es insignificante. Debido a ello, se hace necesario recurrir a la reproducción desde el litio usando alguna de las siguientes reacciones:
El neutrón reactante es suministrado por la reacción D-T anterior. La reacción con 6Li es exotérmica, suministrando una pequeña ganancia de energía al reactor. La reacción con 7Li es endotérmica pero no consume el neutrón. Se requieren al menos algunas reacciones con 7Li para reemplazar los neutrones perdidos por la absorción de otros elementos. La mayoría de los diseños de reactores se aprovechan de la ocurrencia natural de una mezcla de isótopos de litio.
Aunque más difícil de producir que la reacción Deuterio-Tritio, la fusión puede realizarse a través de la fusión del Deuterio consigo mismo. Esta reacción produce dos ramas que ocurren con casi la misma probabilidad:
La cantidad óptima de energía para iniciar esta reacción es 15 MeV, sólo ligeramente mayor que la óptima para la reacción D-T. La primera rama no produce neutrones, pero sí Tritio, por lo que un reactor D-D no estará totalmente libre de Tritio, incluso pese a no requerir una entrada de tritio o litio. La mayoría del tritio producido se consumirá antes de dejar el reactor, lo que reducirá la cantidad de tritio a manejar, pero producirá más neutrones, algunos de los cuales serán bastante energéticos. Los neutrones de la segunda rama tienen una energía de sólo 2.45 MeV (0.393 pJ), mientras los neutrones de la reacción D-T tendrán una energía de 14.1 MeV (2.26 pJ), resultando en una mayor producción de isótopos y deterioro de material.
Suponiendo que se consuma todo el tritio del reactor, la reducción en la fracción de la energía de fusión llevada por los neutrones sería de solo un 18%, así que la principal ventaja del ciclo de combustión D-D es que no necesita producción de tritio. Otras ventajas son la independencia del escaso abastecimiento de litio y una algo más suave radiación de neutrones durante el proceso. La desventaja de la D-D comparada con la D-T es que el tiempo de confinamiento (a una presión determinada) será 30 veces más largo y la potencia producida (a una presión y volumen dados) sería 68 veces menor.
Escribe un comentario o lo que quieras sobre Energía de fusión (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)