x
1

Grandes Observatorios



Los Grandes Observatorios son una serie de cuatro grandes y potentes telescopios espaciales puestos en funcionamiento por la NASA. Cada uno de los Grandes Observatorios tiene un tamaño y costo similar al resto, y todos han hecho contribuciones clave a la astronomía. Cada misión está centrada en una región del espectro electromagnético.[1]​ {Contenido|derecha}

De estos satélites actualmente dos no están operativos:

Por su parte, estaba previsto que el Hubble volviese a la Tierra en el transbordador espacial pero el plan de recuperación fue abandonado posteriormente. El 31 de octubre de 2006 el administrador de la NASA Michael D. Griffin dio el visto bueno para una última misión de renovación. La misión STS-125 del Atlantis, lanzada el 11 de mayo de 2009,[2]​ instaló baterías nuevas, sustituyó todos los giroscopios e instaló la Cámara de Gran Angular 3 y el Cosmic Origins Spectrograph.[3]

El Spitzer es el único de los Grandes Observatorios que no fue lanzado por la lanzadera espacial. Tras el desastre del Challenger, la etapa superior requerida para colocar el observatorio en órbita heliocéntrica, la Centaur LH2/OX fue prohibida para los vuelos del transbordador. Los cohetes Titan y Atlas tenían un lanzamiento demasiado costoso, de manera que se optó por un rediseño y el lanzamiento usando un cohete Delta II.

Cada observatorio ha sido diseñado para usar las últimas tecnologías disponibles en su respectiva región del espectro.

El Hubble es el observatorio más beneficiado directamente de encontrase por encima de la atmósfera, pues así se reducen las interferencias y aumenta la resolución espacial. Telescopios terrestres mucho mayores han alcanzado recientemente la resolución del Hubble en el espectro infrarrojo, pero aún no en el visible. Por otro lado, al estar en el espacio evita el efecto producido por la ligera emisión de luz visible de la atmósfera terrestre, permitiendo al Hubble observar objetos muy distantes. Los observatorios terrestres no tienen manera de compensar éste efecto, de manera que les resulta imposible observar los objetos que puede llegar a fotografiar el Hubble.

El Compton observa en rayos gamma, los cuales simplemente no alcanzan la superficie. Era bastante más grande que los observatorios de rayos gamma que le precedieron, lo que le sirvió para abrir por sí mismo nuevas áreas de estudio. Además tenía cuatro instrumentos, que se complementaban para obtener mejores sensibilidades, resoluciones y campos de vista. Los rayos gamma se emiten desde fuentes muy energéticas, como agujeros negros y supernovas.

El Chandra, del mismo modo, no tiene predecesores terrestres, y sólo algunos en órbita pero siempre más pequeños que él. Su resolución espacial era de un orden de magnitud mayor que las misiones anteriores, pues su gran tamaño, alta órbita, y sensibles CCDs le permiten observar fuentes de rayos X muy débiles. Estas fuentes también son muy potentes, que se observan con más detalle que en rayos gamma.

El Spitzer es difícil o imposible de imitar en tierra, y tiene pocos predecesores en órbita. Spitzer no es mucho mayor que su predecesor, el Observatorio Espacial Infrarrojo (en inglés Infrared Space Observatory, ISO), sin embargo, se ha aprovechado del rápido avance de la tecnología de los detectores de infrarrojos. Combinando esto con su tamaño ligeramente mayor, un campo de visión favorable y su larga vida, los resultados científicos devueltos no tienen precedentes. Las observaciones infrarrojas se usan para objetos fríos que no emiten mucha luz visible, o objetos oscurecidos por polvo interestelar en longitudes de onda visibles.

Más allá de las capacidades de cada misión (particularmente las sensibilidades, que no pueden ser alcanzadas por los observatorios terrestres) el programa de los Grandes Observatorios permite a las misiones interactuar para lograr un mayor retorno de datos. Diferentes objetos brillan en diferentes longitudes de onda, o sea que tener dos o tres observatorios apuntando a un mismo objeto permite un mayor entendimiento.

Los estudios de alta energía (rayos X y gamma) sólo tienen hoy por hoy una resolución moderada. Estudiando los objetos que emiten en rayos X y gamma con el Hubble además que con el Chandra y el Compton, se traduce en mayor precisión en datos de tamaño y posición. En particular, la resolución del Hubble puede discernir a veces si el objetivo de estudio es un objeto solitario o parte de una galaxia y si un objeto brillante se encuentra en el núcleo, los brazos o el halo de una galaxia espiral. De la misma manera, la menor apertura del Spitzer significa que el Hubble puede añadir información espacial más detallada a una imagen del primero.

Estudios ultravioleta con el Hubble también revelan el estado temporal de objetos de alta energía. Los rayos X y gamma son más difíciles de detectar con las tecnologías hoy disponibles que la luz visible o ultravioleta. Por tanto, el Chandra y el Compton necesitan de largos tiempos de integración para obtener suficientes fotones como para lograr una imagen. Esto puede ser un problema, ya que ciertos objetos que brillan en rayos X y gamma son pequeños y pueden variar enormemente en minutos o incluso segundos. Por tanto, estos objetos pueden ser seguidos con el Hubble o el Rossi X-ray Timing Explorer, el cual puede tomar medidas detalladas en segundos o fracciones de segundo, debido a su diferente diseño.

La habilidad del Spitzer para ver a través de polvo y gases es apreciable para observaciones del núcleo galáctico. Grandes objetos en el centro de las galaxias brillan en rayos X, rayos gamma y ondas de radio, pero estudios en infrarrojo en estas zonas llenas de polvo pueden revelar el número y posición de los objetos.

El Hubble mientras tanto, no tiene un campo de visión suficiente como para estudiar todos los objetos interesantes del cielo, por tanto, los objetivos potenciales se localizan con observatorios terrestres (más baratos) o por observatorios espaciales menores, que a veces están diseñados para cubrir grandes áreas del cielo. Además los otros tres Grandes Observatorios han encontrado nuevos objetos interesantes, los cuales merecen la atención del Hubble.

Un ejemplo de trabajo conjunto tiene lugar en el sistema solar y los estudios de asteroides. Los cuerpos más pequeños del sistema solar (lunas y asteroides) son demasiado pequeños como para ser medidos directamente por el Hubble. Lo más que puede darnos el Hubble es el tamaño mínimo del objeto, basándose en su albedo. El tamaño máximo puede ser determinado por el Spitzer a través del conocimiento de la temperatura del cuerpo, la cual es conocida por su distancia al sol. Luego se realiza una espectroscopia detallada por parte del Spitzer para determinar la composición química de la superficie, con la que se calcula el albedo y podemos reajustar el tamaño mínimo para nuestro objeto.

Cronología del trabajo conjunto entre los Grandes Observatorios:

Hay que destacar que ninguna de estas misiones está diseñada para ser lanzada por la lanzadera. La mayoría se encuentra en órbitas más allá del alcance de la lanzadera, de manera que no habrá posibilidad de reparación o mejora una vez lanzadas.



Escribe un comentario o lo que quieras sobre Grandes Observatorios (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!