x
1

Mecánica



La mecánica (en griego, Μηχανική y en latín, mēchanica) o arte de construir una máquina es la rama de la física que estudia y analiza el movimiento y reposo de los cuerpos, y su evolución en el tiempo, bajo la acción de fuerzas.[1]​ Modernamente la mecánica incluye la evolución de sistemas físicos más generales que los cuerpos másicos. En ese enfoque la mecánica estudia también las ecuaciones de evolución temporal de sistemas físicos como los campos electromagnéticos o los sistemas cuánticos donde propiamente no es correcto hablar de cuerpos físicos.

El conjunto de disciplinas que abarca la mecánica convencional es muy amplio y es posible agruparlas en cuatro bloques principales:

La mecánica es una ciencia perteneciente a la física, ya que los fenómenos que estudia son físicos, por ello está relacionada con las matemáticas. Sin embargo, también puede relacionarse con la ingeniería, en un modo menos riguroso. Ambos puntos de vista se justifican parcialmente ya que, si bien la mecánica es la base para la mayoría de las ciencias de la ingeniería clásica, no tiene un carácter tan empírico como estas y, en cambio, por su rigor y razonamiento deductivo, se parece más a la matemática.

Esta rama de la física tiene sus orígenes en la Antigua Grecia con los escritos de Aristóteles y Arquímedes [2][3][4]​. Durante el período moderno temprano, científicos como Galileo, Kepler y Newton sentaron las bases de lo que ahora se conoce como mecánica clásica. Es una rama de la física clásica que se ocupa de partículas que están en reposo o que se mueven con velocidades significativamente menores que la velocidad de la luz. También se puede definir como una rama de la ciencia que se ocupa del movimiento y las fuerzas sobre cuerpos que no están en el reino cuántico. Hoy en día, el campo se conoce menos en términos de teoría cuántica.

La mecánica clásica está formada por áreas de estudio que van desde la mecánica del sólido rígido y otros sistemas mecánicos con un número finito de grados de libertad, a sistemas como la mecánica de medios continuos (sistemas con infinitos grados de libertad). Existen dos formulaciones diferentes, que difieren en el grado de formalización para los sistemas con un número finito de grados de libertad[5]​:

Aplicados al espacio euclídeo tridimensional y a sistemas de referencia inerciales, las dos formulaciones son básicamente equivalentes.

El supuesto básicos que caracteriza a la mecánica clásica es la predictibilidad: teóricamente infinita, matemáticamente si en un determinado instante se conociera (con precisión infinita) las posiciones y velocidades de un sistema finito de N partículas teóricamente pueden ser conocidas las posiciones y velocidades futuras, ya que en principio existen las funciones vectoriales que proporcionan las posiciones de las partículas en cualquier instante de tiempo. Estas funciones se obtienen de unas ecuaciones generales denominadas ecuaciones de movimiento que se manifiestan de forma diferencial relacionando magnitudes y sus derivadas. Las funciones se obtienen por integración, una vez conocida la naturaleza física del problema y las condiciones iniciales.[6]

Existen otras áreas de la mecánica que cubren diversos campos aunque no tienen carácter global. No forman un núcleo fuerte para considerarse como disciplina:

La mecánica de medios continuos trata de cuerpos materiales extensos deformables y que no pueden ser tratados como sistemas con un número finito de grados de libertad.[7]​ Esta parte de la mecánica trata a su vez de:

La mecánica de medios continuos usual es una rama de generalización de la mecánica clásica, aunque durante la segunda mitad del siglo XX se desarrollaron formulaciones relativistas de los medios continuos, aunque no existe un análogo cuántico equivalente ya que dicha teoría interpreta los medios continuos en forma de partículas.

También existe la mecánica de medios continuos relativistas, aunque existen algunos problemas abiertos en relación a las generalizaciones relativistas de la mecánica de medios clásicas. Por otro lado no hay generalizaciones cuánticas que sean el análogo cuántico de la mecánica de medios continuos.

La mecánica estadística trata de sistemas con muchas partículas y que por tanto tienen un número elevado de grados de libertad, al punto que no resulta posible escribir todas las ecuaciones de movimiento involucradas y, en su defecto, trata de resolver aspectos parciales del sistema por métodos estadísticos que dan información útil del comportamiento global del sistema sin especificar qué sucede con cada partícula del sistema.[11]​ Los resultados obtenidos coinciden con los resultados de la termodinámica. Usa tanto formulaciones de la mecánica hamiltoniana como formulaciones de la teoría de probabilidad. Existen estudios de mecánica estadística basados tanto en la mecánica clásica como en la mecánica cuántica.

La mecánica relativista o teoría de la relatividad [12]​comprende:

Existen varias propiedades interesantes de la dinámica relativista, entre ellas[13]​:

Sin embargo, a pesar de todas estas diferencias, la mecánica relativista es mucho más similar a la mecánica clásica desde un punto de vista formal, que por ejemplo la mecánica cuántica. La mecánica relativista sigue siendo una teoría estrictamente determinista.

La mecánica cuántica trata con sistemas mecánicos de pequeña escala o con energía muy pequeña (y ocasionalmente sistemas macroscópicos que exhiben cuantización de alguna magnitud física).[15]​ En esos casos los supuestos de la mecánica clásica no son adecuados. En particular el principio de determinación por el cual el estado futuro del sistema depende por completo del estado actual no parece ser válido, por lo que los sistemas pueden evolucionar en ciertos momentos de manera no determinista (ver postulado IV y colapso de la función de onda), ya que las ecuaciones para la función de onda de la mecánica cuántica no permiten predecir el estado del sistema después de una medida concreta, asunto conocido como problema de la medida. Sin embargo, el determinismo también está presente porque entre dos medidas filtrantes el sistema evoluciona de manera determinista de acuerdo con la ecuación de Schrödinger.

La evolución no determinista y las medidas sobre un sistema, están regidas por un enfoque probabilístico. En mecánica cuántica este enfoque probabilístico, lleva por ejemplo en el enfoque más común renunciar al concepto de trayectoria de una partícula. Peor aún el concepto la interpretación de Copenhague renuncia por completo a la idea de que las partículas ocupen un lugar concreto y determinado en el espacio-tiempo. La estructura interna de algunos sistemas físicos de interés como los átomos o las moléculas solo pueden ser explicados mediante un tratamiento cuántico, ya que la mecánica clásica hace predicciones sobre dichos sistemas que contradicen la evidencia física. En ese sentido la mecánica cuántica se considera una teoría más exacta o más fundamental que la mecánica clásica que actualmente solo se considera una simplificación conveniente de la mecánica cuántica para cuerpos macroscópicos.

También existe una mecánica estadística cuántica que incorpora restricciones cuánticas en el tratamiento de los agregados de partículas.

La mecánica cuántica relativista trata de juntar la mecánica relativista y mecánica cuántica, aunque el desarrollo de esta teoría lleva a la conclusión de que en un sistema cuántico relativista el número de partículas no se conserva y de hecho no puede hablarse de una mecánica de partículas, sino simplemente de una teoría cuántica de campos. Esta teoría logra aunar principios cuánticos y teoría de la relatividad especial (aunque no logra incorporar los principios de la relatividad general). Dentro de esta teoría, no se consideran ya estados de las partículas sino del espacio-tiempo. De hecho cada uno de los estados cuánticos posibles del espacio tiempo viene caracterizado por el número de partículas de cada tipo representadas por campos cuánticos y las propiedades de dichos campos.[16]

Es decir, un universo donde existan Ni partículas del tipo i en los estados cuánticos E1, …, ENi representa un estado cuántico diferente de otro estado en el que observamos en mismo universo con un número diferente de partículas. Pero ambos "estados" o aspectos del universo son dos de los posibles estados cuánticos físicamente realizables del espacio-tiempo. De hecho la noción de partícula cuántica es abandonada en la teoría cuántica de campos, y esta noción se substituye por la de campo cuántico. Un campo cuántico es una aplicación que asigna a una función suave sobre una región del espacio-tiempo un operador autoadjunto. La función suave representa la región donde se mide el campo, y los valores propios del operador número asociado al campo el número de partículas observables a la hora de realizar una medida de dicho campo.




Escribe un comentario o lo que quieras sobre Mecánica (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!