x
1

Mínimo local



En matemáticas, los máximos y mínimos de una función, conocidos colectivamente como extremos de una función, son los valores más grandes (máximos) o más pequeños (mínimos), que toma una función en un punto situado ya sea dentro de una región en particular de la curva (extremo local o relativo) o en el dominio de la función en su totalidad (extremo global o absoluto).[1][2][3]​ De manera más general, los máximos y mínimos de un conjunto (como se define en teoría de conjuntos) son los elementos mayor y menor en el conjunto, cuando existen. El localizar valores extremos es el objetivo básico de la optimización matemática.

Sea , sea y sea un punto perteneciente a la gráfica de la función.

Se dice que es un máximo local de si existe un entorno reducido de centro , en símbolos , donde para todo elemento de se cumple . Para que esta propiedad posea sentido estricto debe cumplirse .

Análogamente se dice que el punto es un mínimo local de si existe un entorno reducido de centro , en símbolos , donde para todo elemento de se cumple .

Sea , sea y sea un punto perteneciente a la gráfica de la función.

Se dice que P es un máximo absoluto de f si, para todo x distinto de perteneciente al subconjunto A, su imagen es menor o igual que la de . Esto es:

máximo absoluto de .

Análogamente, P es un mínimo absoluto de f si, para todo x distinto de perteneciente al subconjunto A, su imagen es mayor o igual que la de . Esto es:

mínimo absoluto de .

Dada una función suficientemente diferenciable , definida en un intervalo abierto de , el procedimiento para hallar los extremos de esta función es muy sencillo:

Sea . Hallar sus extremos locales y sus puntos de inflexión. Dada la función , se tiene que:

existe un máximo en .

existe un mínimo en .

.

existe un punto de inflexión en .

Dada una función de n variables, un extremo requiere calcular el gradiente. Por ejemplo la función , dada por , nótese que la función puede escribirse equivalentemente como suma de dos funciones estrictamente positivas minimizando los términos por separado es obvio que para se tiene un mínimo. El procedimiento estándar cuando los mínimos no son evidentes a simple vista consiste en calcular la matriz jacobiana (que en este caso coincide con el gradiente):

Por lo tanto, para alcanzar un mínimo se requeriría ; es decir, precisamente la solución .

Un problema de extremos condicionados consiste en buscar un extremo de una función no sobre cualquier punto de su dominio sino sobre un subconjunto del dominio de la función que puede expresarse como variedad diferenciable. Más concretamente consiste en encontrar un máximo (o un mínimo) sujeto a la condición de que el punto donde se produce pertenezca a un cierto conjunto:

Este tipo de problemas aparece en numerosas aplicaciones prácticas tanto en ciencias físicas como en economía, por ejemplo. Para resolver este tipo de problemas se usa el método de los multiplicadores de Lagrange.



Escribe un comentario o lo que quieras sobre Mínimo local (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!