Modus ponendo tollens (latín: "el modo que, al afirmar, niega") es una regla de inferencia válida de la lógica proposicional, a veces abreviado MPT. El modus ponendo tollens establece que, si no es posible que dos términos sean simultáneamente verdaderos; y uno de ellos es verdadero; entonces se puede inferir que el otro término no puede ser verdadero.
El modus ponendo tollens puede escribirse formalmente como:
donde cada vez que aparezcan las instancias de "" y "" en las líneas de una demostración, se puede colocar "" en una línea posterior. En resumen, "si P y Q no pueden ser verdad simultáneamente, y P es verdad, entonces Q no puede ser verdad."
Un ejemplo de modus ponendo tollens es:
Como E.J. Lemmon lo describe: "Modus ponendo tollens es el principio de que, si se sostiene la negación de una conjunción, y también una de sus oraciones conjuntivas, entonces la negación de la otra oración conjuntiva asimismo se sostiene."
Escribe un comentario o lo que quieras sobre Modus ponendo tollens (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)