x
1

Sistemas complejos



Un sistema complejo está compuesto por varias partes interconectadas o entrelazadas cuyos vínculos crean información adicional no visible ante el observador como resultado de las interacciones entre elementos.

En contraposición, un sistema «complicado» también está formado por varias partes pero las relaciones entre estas no añaden información adicional. Nos basta con saber cómo funciona cada una de ellas para entender el sistema. En un sistema complejo, en cambio, existen variables ocultas cuyo desconocimiento nos impide analizar el sistema con precisión. Así pues, un sistema complejo, posee más información que la que da cada parte independiente. Para describir un sistema complejo hace falta no solo conocer el funcionamiento de las partes sino conocer el funcionamiento del sistema completo una vez relacionadas sus partes entre sí.

En los últimos años ha surgido, en prácticamente todos los campos del ámbito científico, una importante transformación conceptual y metodológica relacionada estrechamente al estudio de los llamados fenómenos no-lineales, cuyo análisis se engloba, parcialmente, dentro de los llamados sistemas complejos. Como parte de esta nueva visión, se ha puesto en evidencia que diversas propiedades espacio-temporales de los sistemas complejos surgen espontáneamente a partir de interacciones de los elementos constituyentes, en escalas de tiempo y longitud considerablemente mayores que las escalas donde ocurren dichas interacciones.[1]

Estudios recientes se han enfocado en el tratamiento de modelos no lineales para comprender ecuaciones elípticas completamente no lineales, conteniendo términos de orden cero que las hacen impropias. Concretamente analizan aspectos relacionados con la existencia y la unicidad o, al contrario, infinidad de soluciones positivas.[2]

En la teoría del electromagnetismo se analizan las ecuaciones de Maxwell para campos electromagnéticos cuasiestacionarios, el modelo puede ser analizado como una ecuación parabólica no lineal en una zona acotada del dominio correspondiente, y la ecuación de Laplace en la región exterior no acotada; ambas ecuaciones están acopladas mediante condiciones de propagación sobre la interfase de interés.[3]

Una situación en la que aparece una ecuación completamente no lineal es en el juego Tug-of-War (tira y afloja). Juego de suma cero para dos jugadores, es decir, hay dos rivales y las ganancias totales de cada uno de ellos suponen las pérdidas de su oponente. Por tanto, uno de ellos, por ejemplo, el jugador I, jugará tratando de obtener el máximo beneficio mientras que el jugador II intentará minimizar el beneficio del jugador I (o, dado que el juego es de suma cero, maximizar el suyo propio). Este tipo de juegos de tira y afloja aleatorios han sido estudiados en conexión con algunos problemas de EDP (ecuaciónes en derivadas parciales). Pueden encontrarse otros juegos en relación con el estudio de ecuaciones degeneradas. La conexión del juego con infinito Laplaciano es mediante el principio de programación dinámica del juego.[4]

Aunque no hay consenso en cuanto a la definición de sistemas complejos,[5]​ todos ellos comparten varias propiedades claramente identificables. Estas características desafían los supuestos básicos de las teorías tradicionales (tales como agentes independientes (i.i.d.), o patrones fijos de crecimiento, etc.). Entre ellas se destaca que los sistemas complejos consisten en entes:[6]

Un ejemplo típico de sistema complejo es la Tierra. La Tierra está formada por varios sistemas que la describen:

Cada uno de estos sistemas está bien estudiado, pero desconocemos la forma en que interactúan y hacen evolucionar el sistema «Tierra». Hay, pues, mucha más información oculta en esas interrelaciones de sistemas.

Otros sistemas complejos típicos son:



Escribe un comentario o lo que quieras sobre Sistemas complejos (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!