x
1

Teorema de Borsuk-Ulam



En matemáticas, el teorema Borsuk-Ulam afirma que cualquier función continua de una n-esfera en el espacio euclideo de dimensión n hace corresponder algún par de puntos antipodales al mismo punto. (Dos puntos en una esfera llaman antipodales si están exactamente en direcciones opuestas desde el centro de la esfera.)

Formalmente:

El caso n = 1 puede ser ilustrado diciendo que siempre hay un par de puntos opuestos en el ecuador de la tierra con la misma temperatura. Lo mismo es cierto para cualquier círculo. Esto supone que la temperatura varía continuamente.

El caso n = 2 se ilustra a menudo diciendo que en cualquier momento, siempre hay un par de puntos antipodales en la superficie de la Tierra con iguales temperaturas e iguales presiones barométricas.

Stanisław Ulam fue el primero en conjeturar el teorema y posteriormente fue demostrado por Karol Borsuk en 1933.

Existe una demostración elemental de que el teorema de Borsuk-Ulam implica el Teorema del punto fijo de Brouwer.[1]




Escribe un comentario o lo que quieras sobre Teorema de Borsuk-Ulam (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!