El teorema de la estadística del espín o teorema de la correspondencia entre espín y estadística de la mecánica cuántica establece la relación directa entre el espín de una especie de partícula con la estadística a la que obedece. Fue demostrado por Fierz y Pauli en 1940, y requiere el formalismo de teoría cuántica de campos.
Estas dos propiedades están en aparencia totalmente descorrelacionadas. Sin embargo es un hecho experimental que todos los bosones poseen espín entero, mientras que los fermiones poseen espín semientero. Esta relación constituye el enunciado del teorema.
Hay un par de fenómenos interesantes facilitados por los dos tipos de estadística. La distribución de Bose-Einstein describe los bosones en un condensado Bose-Einstein. Bajo una cierta temperatura, la mayoría de las partículas en un sistema bosónico estará en el estado fundamental (el de más baja energía). De ahí resultan propiedades inusuales como la superfluidez.
La distribución de Fermi-Dirac, que describe el comportamiento de los fermiones, también proporciona interesantes propiedades. Dado que sólo un único fermión puede ocupar un estado cuántico, el nivel fundamental de energía sólo puede ser ocupado por dos fermiones, con sus espines alineados de manera contraria. Así, incluso al cero absoluto de temperatura, el sistema tiene una cierta energía diferente de cero. Como resultado, un sistema fermiónico ejerce presión externa. Aún a temperaturas diferentes de cero absoluto, dicha presión existe. Esta presión es la responsable de que ciertas estrellas masivas no puedan colapsar debido a la gravedad (ver enana blanca, estrella de neutrones, y agujero negro).
Escribe un comentario o lo que quieras sobre Teorema de la estadística del espín (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)