x
1

Triángulo Reuleaux



El triángulo Reuleaux es el ejemplo más sencillo de los llamados polígonos de Reuleaux, denominados así por el científico e ingeniero que los desarrolló, Franz Reuleaux. Estos polígonos tienen la particularidad de ser curvas de anchura constante, es decir, que la distancia entre dos rectas tangentes paralelas opuestas es la misma, independientemente de la dirección de esas rectas. Esto puede apreciarse en la figura adjunta, en la que siempre hay cuatro puntos de tangencia con el cuadrado, uno en cada lado.

El área del triángulo de Reuleaux es , donde a es la anchura constante. El área de un círculo de igual diámetro es , que es mayor. Más aún, el teorema de Blaschke-Lebesgue establece que el triángulo de Reuleaux tiene menor superficie que cualquier otra figura de igual anchura constante.

Su perímetro es (véase la explicación en la sección siguiente).

El triángulo de Reuleaux puede generalizarse a otros polígonos regulares con un número impar de lados, como puede ser el caso de las monedas británicas de 20 peniques (basadas en un heptágono).

Partiendo de un triángulo equilátero de lado a delíniese, haciendo centro en uno de los vértices del triángulo y con radio a, un arco de circunferencias que una entre sí a los dos vértices restantes, repítase la operación para cada vértice y ya se habrá obtenido el triángulo de Reuleaux buscado. Borrando el triángulo inicial, el espacio central que delimitan en común las tres cirunferencias es el triángulo de Reuleaux, una curva de anchura constante.

Cada uno de los ángulos de un triángulo equilátero es de radianes. Cada uno de los tres arcos es de longitud . Por tanto el perímetro del triángulo de Reuleaux es .

La intersección de esferas de radio s centradas en los vértices de tetraedros regulares con lado también s es denominado el tetraedro Reuleaux, pero en este caso no es una superficie de anchura constante. Puede, sin embargo, ser realizada dentro de una superficie de anchura constante, conocida como el tetraedro Meissner, reemplazando sus límites en forma de arco por "parches" de superficie curvada. Alternativamente, la superficie de un triángulo de Reuleaux en revolución sobre uno de sus ejes simétricos forma una superficie de anchura constante.



Escribe un comentario o lo que quieras sobre Triángulo Reuleaux (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!