En matemáticas, para aproximar la derivada de una función con un orden arbitrario de exactitud, es posible de utilizar el método de diferencias finitas. Este puede ser central, hacia delante o hacia atrás.
Si es una función continua y diferenciable, y es un intervalo finito alrededor de , la aproximación de una derivada enésima de la función con un orden de precisión , puede representarse de manera general por el método de diferencias finitas centrales como
donde los coeficientes son específicos para cada derivada dependiendo del orden de precisión. Además, implica que el valor está redondeado al valor entero menor que .
La siguiente tabla contiene los respectivos coeficientes para el cálculo de derivadas de una función por diferencias finitas centrales, para varios órdenes de precisión:
Por ejemplo, la tercer derivada con un orden de exactitude de segundo grado es
donde representa el paso finito entre cada intervalo de diferencias finitas.
De manera análoga al método de diferencias finitas centrales, es posible escribir la aproximación de la enésima derivada por el método de diferencias finitas hacia adelante como
donde son los coeficientes correspondientes para este método. Algunos de estos se muestran en la siguiente tabla :
Por ejemplo, por el método de diferencias finitas hacia delante las derivadas primera y segunda con una precisión de tercer y segundo orden, respectivamente, son
Mientras que las mismas aproximaciones obtenidas por el método de diferencias finitas hacia atrás están dadas por
En general, conseguir los coeficientes de la aproximación hacia atrás es muy simple. Para las derivadas de orden par ( = 2, 4, 6...) son los mismos que para la aproximación hacia delante. Por otro lado, para las derivadas de orden impar ( = 1, 3, 5...) basta con cambiar el signo de los coeficientes listados en la tabla anterior.
La tabla siguiente ilustra esto de manera resumida:
Escribe un comentario o lo que quieras sobre Coeficiente de diferencias finitas (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)