En lógica, la contraposición lógica es una ley que dice que, para cada sentencia condicional, hay una equivalencia lógica entre la misma y su contraposición. En la contraposición de una sentencia, el antecedente y consecuente son invertidos y negados: la contraposición de es, por lo tanto, . Ambas expresiones son equivalentes.
Por ejemplo, la proposición "Todos los perros son mamiferos" puede ser reescrita en su forma condicional "Si es perro, es mamífero." La ley dice que esta sentencia es idéntica a su contraposición "Si no es mamífero, entonces no puede ser perro."
Note que si es verdadera y nos es informado de que Q es falsa, es decir , se puede inferir lógicamente que P debe ser falso, es decir, . Esto es, normalmente llamado ley de contraposición, o regla de inferencia modus tollendo tollens
Dada una afirmación original, es posible obtener todas sus formas condicionales.
Considere el diagrama de Venn de la derecha. Está claro que, si algo está en A, también debe estar en B. Podemos reescribir "Todo A está en B", como
También está claro que cualquier cosa que no está en B, también no puede estar en A. Esa sentencia,
es la contrapositiva. Así, podemos decir que
En la práctica, esto puede facilitar bastante al intentar probar algo. Por ejemplo, si queremos demostrar que todas las chicas de Suecia () son rubias (), podemos tratar de probar revisando a cada una de las chicas de Suecia para ver si todas son rubias. O, alternativamente, podemos tratar de probar , es decir, que todas las chicas no rubias están fuera de Suecia. Si encontramos al menos una chica no rubia en Suecia, hemos refutado , y por equivalencia, hemos refutado también .
En síntesis, para cualquier juicio que A implica B, entonces no B siempre implica no A. Probar o refutar cualquiera de las dos sentencias automáticamente prueba o refuta la otra. Son completamente equivalentes.
La proposición Q está implícita en la proposición P cuando la siguiente relación es verdadera:
En términos coloquiales, esto significa que "si P, entonces Q", o, "si Sócrates es hombre, entonces Sócrates es humano." En un condicional como ese, P es el antecedente, y Q es el consecuente. Una sentencia es contrapositiva de otra solamente cuando su antecedente es la negación del consecuente de la otra, y viceversa. La contrapositiva del ejemplo es
Esto es, "Si no Q, entonces no P", o más precisamente "Si Q no es el caso, entonces P no es el caso." Usando nuestro ejemplo, "Si Sócrates no es humano, entonces Sócrates no es un hombre." Esta sentencia se dice que es contrapuesta con relación a la original y las dos son lógicamente equivalentes. Debido a la equivalencia lógica, afirmar una afirma automáticamente la otra: cuando una es verdadero, la otra también. Lo mismo ocurre para la falsedad.
Rigurosamente, la oposición solo puede existir en dos condicionales simples. Sin embargo, la oposición también puede existir en dos condicionales complejos, si los mismos son semejantes. Por lo tanto, , o "Todos los Ps son Qs," tiene como contrapositiva , o "Todo no Q es no P."
En la lógica de primer orden, una sentencia condicional es definida como:
Se tiene:
Sea:
Es como si A es verdad, entonces B es verdad, y también se da que B es falso. Entonces podemos, entonces, mostrar que A no debe ser verdad, por contradicción. Por ejemplo, si A fuese verdadero, entonces B también tendría que ser verdadero (dado). Sin embargo, se nos da que B no es verdadero, entonces tenemos una contradicción. Luego, A no es verdad (suponiendo que estamos tratando con declaraciones concretas que solo pueden ser verdaderas o falsas (ley del tercero excluido)):
Podemos aplicar el mismo proceso en sentido contrario:
También sabemos que B o es verdadero o falso. Si B es falso, entonces A es también. Sin embargo, se da que A es verdad. Así, la suposición de que B es falso nos lleva a una contradicción, por lo tanto, debe ser falsa. Por lo tanto, B debe ser verdadero:
Combinando los dos argumentos, llegamos a la equivalencia:
La equivalencia lógica entre dos proposiciones significa que ambas son simultáneamente verdaderas o simultáneamente falsa. Para probar que una sentencia y su contrapositiva son lógicamente equivalentes, se tiene que entender cuando una implicación es verdadera o falsa.
Esta sentencia es falsa solo cuando P es verdadero y Q es falso. Así, podemos reducir esta proposición a la sentencia "Falso cuando P y no Q" (es decir, "Verdadero cuando P no es el caso y no Q"):
Los elementos de una conjunción lógica pueden ser revertidos sin cambiar el significado de la frase (por conmutatividad):
Se define como igual a "", y como igual a , (también, es igual a solamente):
Esta frase se lee como "No es cierto que (R es verdadero y S es falso)", que es la definición de un condicional. Entonces podemos realizar la siguiente sustitución:
Cuando se intercambia las definiciones de R y S, se llega a:
Aunque el valor-verdad de las sentencias puede diferir, el valor-verdad de expresiones equivalentes siempre es el mismo.
Considere la sentencia «Todo objeto rojo tiene color». La misma puede ser expresada de manera equivalente como «Si un objeto es de color rojo, entonces tiene color».
En otras palabras, la contrapositiva es lógicamente equivalente a un determinado condicional, aunque no es válida para bicondicionales ('si y sólo si').
Del mismo modo, considere la sentencia "Todo cuadrilátero tiene cuatro lados", o, expresado de forma equivalente: "Si un polígono es un cuadrilátero, entonces el mismo tiene cuatro lados."
Como la sentencia y su recíproco son ambas verdaderas, esta afirmación se llama bicondicional, y puede expresarse como "Un polígono es un cuadrilátero si y solamente si tiene cuatro lados." (La frase si y solamente si puede ser abreviada como IFF.) Esto es, tener cuatro lados para ser es un cuadrilátero y también suficiente para que un polígono sea cuadrilátero.
Como la contrapositiva de una sentencia siempre tiene el mismo valor de verdad (verdadero o falso) que la sentencia, puede ser una herramienta bastante útil para demostrar teoremas matemáticos. Una prueba por contradicción es una prueba directa de la contrapositiva de una declaración.
Sin embargo, los métodos indirectos también se pueden utilizar con contraposición, como por ejemplo la prueba por contradicción, por ejemplo, en la prueba de irracionalidad de la raíz cuadrada de 2. Por la definición de un número racional, podemos decir que "Si es racional, entonces el mismo se puede expresar por una fracción irreducible." Esta frase es verdadera, pues una manera de volver a reescribir la definición (verdadera). La contrapositiva de esta sentencia es "Si no puede ser expresado a través de una fracción irreeducible, entonces no es racional." Esta contrapositiva, así como la sentencia original, también es verdadera. Por lo tanto, se puede demostrar que no puede ser expresada como una fracción irreducible, entonces debe ser cierto que no es un número racional. Este último puede ser probado por la contradicción.
El ejemplo anterior utiliza la contrapositiva de una definición de demostrar un teorema. También se puede probar un teorema que demuestra la contrapositiva de la declaración del teorema. Para probar que, si un entero positivo N es un número no cuadrado, a su vez, su raíz cuadrada es irracional, que no puede demostrar su equivalente positivo frente que si un entero positivo N tiene una raíz cuadrada, que es racional, entonces N es un número cuadrado. Esto se puede demostrar mediante la creación de √N igual a la expresión racional a/b con a y b siendo números enteros positivos sin ningún factor primo en común, y en cuadratura para obtener N = a2/b2 y notar que una vez que N sea un número entero positivo b=1 de modo que N = a2, un número cuadrado.
Escribe un comentario o lo que quieras sobre Contraposición lógica (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)