x
1

Cresta neural



La cresta neural es una estructura biológica discreta que comprende unas pocas células y existe transitoriamente en etapas tempranas del desarrollo embrionario de vertebrados; sin embargo comprende algunas de las cuestiones más relevantes en el desarrollo. Gracias a sus propiedades pluripotentes, sus células tienen un gran potencial de diferenciación: desde huesos, tendones, tejidos conectivo, adiposo y dermis hasta melanocitos, neuronas y células gliales y endocrinas. La cresta neural se forma de acuerdo a un gradiente rostro caudal a lo largo del eje del cuerpo y libera células de libre movimiento parecidas a las de la mesénquima que siguen rutas de migración definidas en tiempos precisos del desarrollo, alcanzando sitios embrionarios objetivo donde finalmente se establecen y diferencian.[1]​ Resulta tan importante su función que incluso ha llegado a ser nombrada como “la cuarta capa germinal”.[2]

La formación de la misma cresta neural fue observada y descrita por primera vez en 1868 por el embriólogo suizo Wilhelm His, gracias a sus estudios del desarrollo en embriones de pollo. His describe este proceso como  el engrosamiento de ectodermo dorsal a la notocorda, ubicado como una banda de células situadas entre el tubo neural y el futuro ectodermo epidérmico, que es un derivado del ectodermo neural. Estas células van a sufrir un proceso de migración para llegar a su destino y se diferenciarán en distintos tipos celulares. Describió la cresta neural como una tira de células entre el ectodermo dorsal y el tubo neural.[1]​ His no acuña el término cresta neural sino que se refiere a estas células como “Zwischenrinne” (canalón; en medio de) y “Zwischenstrang” (cuerda; en medio de) por su ubicación respecto al tubo neural y la epidermis. El término actual con el que nos referimos a estas células –cresta neural- fue introducido por Marshall en 1879, en donde se da el cambio de “Zwischenrinne” y “Zwischenstrang” a cresta neural y borde de la cresta neural respectivamente.[3]

El surgimiento de las células de la cresta neural coincide con el surgimiento de los vertebrados, los cuales pertenecen al filo de los cordados junto con los proto-cordados, quienes a su vez se encuentran conformados por dos grupos, los cefalocordados y los urocordados. Estos tres grupos comparten un patrón corporal similar que incluye un sistema nervioso dorsal, notocorda y hendiduras branquiales, que les permiten ser diferenciados de los deutorostomados invertebrados.Tal como se manifestó, evolutivamente, las células de la cresta neural son propias de los vertebrados, pero no se debe excluir un antecesor biológico pre-cordado (cefalocordado o urocordado), o de uno no cordado en cuyo sistema nervioso se diferenciaron inicialmente crestas neurales. Evidencia reciente ha demostrado que en el anfioxo (agnato) y en la ascidia (urocordado) se expresan poblaciones de células diferenciadas de los bordes de la placa neural, homólogas a las células de la cresta neural.

De igual forma, investigaciones sobre las familias de genes, proteínas e inductores de la formación de las crestas neurales encontrados en anfioxos y ascidias sugieren que el potencial para desarrollar dichas crestas se encontraba desde los pre-vertebrados y que solo los vertebrados desarrollaron la capacidad de migración y la pluripotencialidad.

Por ejemplo, el tubo neural de los primeros vertebrados al igual que los protocordados, consiste en una estructura básica con un alto nivel de organización y conservación genética cuyo paso de una posición ventral a una dorsal parece ser controlada, en ambos grupos, por mecanismos genéticos similares, los genes SHH en la región ventral del tubo neural y los genes BMP en el ectodermo adyacente al tubo neural. Sin embargo, los proto-cordados no cuentan con un grupo celular específico que se adapte perfectamente al significado tradicional de célula de la cresta neural.

De hecho, aunque los cefalocordados, los urocordados y otros deutorostomados como los equinodermos y hemi-cordados cuentan con un tubo neural dorso-ventral, estos no desarrollaron otros elementos derivados de dicha población de células neurales como neuronas, ganglios, melanocitos, cartílago y tejido óseo. Es por ello que diferentes autores indican que el surgimiento de la cresta neural es un acontecimiento específico de los vertebrados y que la diversidad morfológica sugiere cambios en el control del desarrollo, los cuales requieren a su vez cambios en la regulación y expresión de los genes implicados.

Las células de la cresta neural constituyen una población de células migratorias multipotentes que contribuyen a un amplio rango de derivados de los embriones de vertebrados, como neuronas y células de soporte del sistema nervioso periférico, melanocitos y células endocrinas, también contribuyen a la formación de gran parte de la estructura esquelética de la cabeza (huesos y cartílagos). Es importante tener en cuenta que la importante contribución de las células de la cresta neural en el desarrollo a células específicas, órganos y sistemas durante el desarrollo también significa que estas células están implicadas en el desarrollo de muchas patologías en humanos que se pueden evidenciar en defectos de nacimiento relacionados con malformaciones craneofaciales y malformaciones congénitas del corazón entre otras.[3]

Las células de la cresta neural (CCN) se desprenden de la placa neural o del tubo neural después de modificar su forma y sus propiedades originales de células neuroepiteliales y adoptar las de las células mesenquimatosas.

La separación de las CCN y su posterior migración representa una característica única del neuroectodermo, muy similar a otros procesos biológicos como la migración y diferenciación de las células del ectodermo que se invaginan para conformar el tubo neural o en procesos patológicos como la migración de células tumorales durante la metástasis.

Para que las CCN se desprendan e inicien el proceso de migración, proteínas de adhesión célula-célula de los desmosomas y célula-membrana basal de los hemidesmosomas deben actuar de forma coordinada junto con componentes del citoesqueleto, proteínas de la matriz extracelular y factores de transcripción.

Por supuesto, este proceso morfogenético requiere del control genético de diferentes señales expresadas a lo largo del dorso del tubo neural, a la supresión en la región cefálica de BMP4 y al desarrollo de los somitas a través de la relación molecular entre el mesodermo intra embrionario paraxial y el neuroectodermo. [4]​ Otros grupos de genes dependientes de la expresión inicial de BMP y asociados a la separación de las CCN del tubo neural son Snail2 (regula la delaminación en la región cefálica tras promover factores que disocian las uniones estrechas entre células), FoxD3 (esencial en a especicación de células ectodérmicas como CCN), Pax3 (media la comunicación entre el ectodermo, tubo neural y el mesodermo de los somitas), rhoB (se une al complejo caderina-catenina separando las uniones célula-célula además de promover la locomoción celular tras la polimerización de actina y la unión de los microfilamentos a la membrana celular), Cad6 (regula la pérdida de caderina N en la superficie de las células), Msx1, Msx2, y Wnt 1 (BMP/Wnt inducen cambios en el complejo formado por caderina-catenina–membrana basal– y los filamentos de actina –citoesqueleto– a través de rhoB).

Adicionalmente, la vía de señalización Hedgehog ha sido involucrada en la inducción, especificación y migración de la cresta neural, siendo el factor de transcripción Gli2 vital para estos procesos del desarrollo [5][6]​ Por otro lado, la proteína Notch y la kinesina Eg5 cumplen un rol importante en el establecimiento temprano de la población de cresta neural, como fue demostrado utilizando el organismo modelo Xenopus laevis.[7][8]

Otro aspecto importante de resaltar es que durante la fase pre-migratoria las CCN presentan una marcada actividad mitótica, por tanto, la delaminación y posterior migración la hacen en la fase S del ciclo celular, ya que en esta fase se genera la posibilidad que la célula pueda moverse y por ende migrar. El proceso de transición de la fase G1 a S también es regulada por BMP.

Una vez conformada estructuralmente, la cresta neural se puede regionalizar en tres dominios a partir de señales inductoras provenientes de la placa

neural y del ectodermo superficial (Wnt, Bmp4 y Bmp7):

Derivados de la cresta neural del tronco: melanocitos, ganglios espinales, ganglios simpáticos, cromafines de la médula suprarrenal y plexos mientérico y submucoso.

Posteriormente, las células de la cresta neural tienen que migrar y transformarse de células epiteliales a células mesénquimales. Este proceso es el denominado transición epitelial-mensequimal. Las células de la cresta neural se determinan como resultado no neutral (posiblemente mediada por la proteína 4 morfogenética ósea [BMP-R] sobre las células laterales de la placa neural, las células inducidas de la cresta neural expresan el gen slug, un factor de trascripción de la familia de dedo de cinc, que caracteriza a las células que se desprenden de la capa epitelial embrionaria y que a continuación migran como células mesenquimales.

La transición epitelio-mesénquima de las CCN induce la pérdida de uniones célula-célula tras la pérdida en las moléculas de adhesión como N-CAM, caderina-E y caderina-N). Una vez delaminadas las células basales, las células apicales conforman una membrana basal nueva sobre el tubo neural. De esta forma, las células desprendidas de la membrana basal establecen tres rutas migratorias: una ventral (células que rodean la notocorda y el tubo neural), una lateral (células por debajo del ectodermo) y una dorsal (células que constituyen las dos terceras partes caudales de cada somita). De acuerdo al desarrollo embrionario, la migración ocurre cuando las crestas neurales se han cerrado completamente para formar el tubo neural y expresan Snail1 y Snail2, mientras que en los seres humanos, las células migran más temprano cuando el tubo neural aún no se ha cerrado.

Mediante moléculas facilitadoras entre las cuales destacan fibronectia, laminina y colágenos I y IV. Dichas moléculas facilitadoras se sitúan en las rutas de migración de la cresta neural. Las células de la cresta neural son capaces de reconocer estas moléculas de la matriz mediante integrinas que tienen en la membrana celular.

Por otro lado, hay una serie de moléculas inhibidoras que impiden la emigración de las células de la cresta neural. Se encuentran en las zonas donde la cresta neural no penetra o bien en las que cesan de emigrar. Entre estos inhibidores destacan T-cadherina y condroitín sulfato proteoglicano.

Las células de la cresta neural se dispersan tan pronto se cierra el tubo neural, se divide en 4 regiones: cranial, del tronco, vagal - sacral y cardiaca.

Produce la mesénquima craneofacial y los arcos faríngeos

Estas células pueden migrar por dos rutas diferentes, una temprana ventral o una tardía dorsolateral. Además dan lugar a muchos derivados celulares tales como células del sistema nervioso periférico y células de schwann.[9]

Se ha demostrado que casi todas las células de la cresta neural son pluripotentes, su diferenciación final se determina por el ambiente al que migran.

Cuando las células alcanzan su destino sufren un proceso de diferenciación que depende de dos factores:

-   En momento de inicio de la migración: las células que primero inician la migración son pluripotenciales ya que se pueden diferenciar en cualquier derivado de la cresta neural. Las últimas que salen solo se pueden diferenciar en melanoblastos.

-   Factores ambientales con los que se encuentran las células cuando termina la emigración. El factor de crecimiento glial induce la diferenciación en células de Schwann que son células productoras de mielina La plasticidad de la diferenciación de las células de la cresta neural puede demostrarse si se clonan en cultivo sólo células de la cresta neural. Por ejemplo, en un experimento las células  de la cresta neural de ratas que se cultivaron in vitro en condiciones estándar se transformaron en neuronas, pero cuando se les añadió factor β de crecimiento glial se diferenciaron en células de Schwann porque ese factor suprimió su tendencia a convertirse en neuronas. De igual manera, los factores de crecimiento BMP-2 y BMP-4 hacen que las células de la cresta neural en cultivo se conviertan en neuronas autonómicas, en tanto que la exposición de estas células al factor β de transformación del crecimiento hace que se diferencien en músculo liso.

No todos los tipos de transformaciones pueden producirse entre los posibles derivados de la cresta neural. Por ejemplo, las células de la cresta del tronco trasplantadas a la cabeza no pueden formar cartílago ni elementos esqueléticos, aunque esto sea lo normal para las células de la cresta neural craneal. La mayoría de los experimentos sugiere que las células primitivas de la cresta neural pueden segregarse en linajes intermedios que conservan la posibilidad de diferenciarse en varios pero no en todos, los tipos de fenotipos individuales. En el embrión de pollo, algunas células de la cresta neural son antigénicamente diferentes de otras, incluso antes de haber dejado el tubo neural.

Algunas células de la cresta neural son bipotenciales y dependiendo de las señales que reciben de su ambiente local adquieren su diferenciación final. Un línea llamada linaje simpatoadrenal forma las células de la médula suprarrenal si se exponen a los glucocorticoides suprarrenales. En contraste, si antes se exponen al factor de crecimiento de los fibroblastos (FGF) y después al factor de crecimiento de los nervios, las mismas células se convierten en neuronas simpáticas. Asimismo, las células cardíacas cultivadas segregan una proteína que convierte las neuronas simpáticas posmitóticas de fenotipo adrenérgico (cuyo neurotransmisor es la norepinefrina) en neuronas de fenotipo colinérgico (cuyo neurotransmisor es acetilcolina). Durante el desarrollo normal, las neuronas simpáticas que inervan glándulas sudoríparas son catecolaminérgicas hasta que sus axones establecen contacto efectivo con la glándula; en ese momento se vuelven colinérgicas. Con tan amplia diversidad de derivados de la cresta neural, es probable que durante el desarrollo se descubran otros cambios de un tipo funcional de células en otro.

Un fallo en los procesos normales de formación de la cresta neural puede dar lugar a un grupo de condiciones congénitas llamadas Neurocristopatías.[10][11]​ Este grupo de enfermedades comprende un gran espectro de malformaciones congénitas, entre las que se encuentra el síndrome de Treacher Collins, la enfermedad de Hirschsprung y el síndrome de DiGeorge, entre otros. Las Neurocristopatías no sólo son causadas por un defecto genético, sino también por Teratógenos.[12]​ Por lo tanto, un incremento en la investigación de los procesos de formación de la cresta neural es vital para el desarrollo de terapias en contra de estas enfermedades.



Escribe un comentario o lo que quieras sobre Cresta neural (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!