En matemáticas, la curvatura escalar de una superficie es el doble de la familiar curvatura gaussiana. Para las variedades riemannianas de dimensión más alta (n > 2), es el doble de la suma de todas las curvaturas seccionales a lo largo de todos los 2-planos atravesados por un cierto marco ortonormal. Matemáticamente, la curvatura escalar o escalar de curvatura, que suele designarse con las letras R o S, coincide también la traza total de la curvatura de Ricci así como del tensor de curvatura.
El escalar de curvatura de Ricci R puede expresarse fácilmente en términos del tensor métrico (y sus primeras derivadas ) que define la geometría de la superficie o variedad riemanniana cuyo escalar de curvatura pretendemos encontrar, usando el convenio de sumación de Einstein:
Donde los símbolos de Christoffel que aparecen en la expresión anterior se calculan a partir de las primeras derivadas de los componentes del tensor métrico:
Escribe un comentario o lo que quieras sobre Curvatura escalar (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)