x
1

Mitocondrias



Las mitocondrias son orgánulos celulares eucariotas encargados de suministrar la mayor parte de la energía necesaria para la actividad celular a través del proceso denominado respiración celular.[1]​ Actúan como centrales energéticas de la célula y sintetizan ATP a expensas de los carburantes metabólicos (glucosa, ácidos grasos y aminoácidos). La mitocondria presenta una membrana exterior permeable a iones, metabolitos y muchos polipéptidos.[2]​ Eso se debe a que contiene proteínas que forman poros llamados porinas o VDAC (canal aniónico dependiente de voltaje), que permiten el paso de moléculas de hasta 10 kDa de masa y un diámetro aproximado de 2 nm.[3]

El descubrimiento de las mitocondrias fue un hecho colectivo. El gran número de términos que se refieren a este orgánulo es prueba de ello: Blefaroplasto, condrioconto, condriómitos, condroblastos, condriosomas, condriosferas, fila, gránulos fucsinofílicos, Korner, Fadenkörper, mitogel, cuerpos parabasales, vermículas, sarcosomas, cuerpos intersticiales, plasmosomas, plastocondrios, bioblastos. Cowdry intentó en 1918, en un trabajo luego citado por Lehninger, sistematizar y unificar todos los términos.[4]

Probablemente las primeras observaciones se deben al botánico suizo Albert von Kölliker, quien entre 1880 y 1888 anotó la presencia de unos gránulos en células musculares de insectos a los que denominó sarcosomas. Llegó incluso a la conclusión de que presentaban membrana.[5]​ En 1882, el alemán Walther Flemming descubrió una serie de inclusiones a las que denominó fila.[6]​ En 1884 también fueron observados por Richard Altmann, quien más tarde en su obra publicada en Leipzig Die Elementarorganismen describe una serie de corpúsculos que observa mediante una tinción especial que incluye fucsina. Especula que se trata de una suerte de parásitos independientes, con su propio metabolismo y los denomina bioblastos. El hallazgo fue rechazado como un artefacto de la preparación, y sólo más tarde fue reconocido como mitocondrias por N. H. Cowdry (en Estados Unidos, en 1916).[7]​ También los «plastídulos» del protozoólogo italiano Leopoldo Maggi podrían tratarse de observaciones tempranas de mitocondrias.[8]

Sin embargo, el nombre de mitocondria, que es el que alcanzó mayor fortuna, se debe a Carl Benda, quien en 1889 denominó así a unos gránulos que aparecían con gran brillo en tinciones de cristal violeta y alizarina, y que anteriormente habían sido denominados «citomicrosomas» por Velette St. George.[7][5]​ En 1904 F. Meves confirma su presencia en una planta, concretamente en células del tapete de la antera de Nymphaea, y en 1913 Otto Heinrich Warburg descubre la asociación con enzimas de la cadena respiratoria, aunque ya Kingsbury, en 1912, había relacionado estos orgánulos con la respiración celular. En 1934 fueron aisladas por primera vez a partir de homogeneizados de hígado y en 1948 Hogeboon, Schneider y Palade establecen definitivamente la mitocondria como el lugar donde se produce la respiración celular.[9]

La presencia del ADN mitocondrial fue descubierta por Margit M. K. Nass y Sylvan Nass en 1963.[5][10]

La morfología de la mitocondria es difícil de describir, puesto que son estructuras muy plásticas que se deforman, se dividen y fusionan.[11]​ Normalmente se las representa en forma alargada. Su tamaño oscila entre 0,5 y 1 μm de diámetro y hasta 8 μm de longitud.[12]​ Su número depende de las necesidades energéticas de la célula. Al conjunto de las mitocondrias de la célula se le denomina condrioma celular.

Las mitocondrias están rodeadas de dos membranas claramente diferentes en sus funciones y actividades enzimáticas, que separan tres espacios: el citosol (o matriz citoplasmática), el espacio intermembranoso y la matriz mitocondrial.

Es una bicapa lipídica exterior permeable a iones, metabolitos y muchos polipéptidos. Eso es debido a que contiene proteínas que forman poros, llamadas porinas o VDAC (de canal aniónico dependiente de voltaje), que permiten el paso de grandes moléculas de hasta 5000 dalton y un diámetro aproximado de 20 Å. La membrana externa realiza relativamente pocas funciones enzimáticas o de transporte. Contiene entre un 60 y un 70 % de proteínas.

La membrana interna contiene más proteínas (80 %), carece de poros y es altamente selectiva; contiene muchos complejos enzimáticos y sistemas de transporte transmembrana, que están implicados en la translocación de moléculas.

En la mayoría de los eucariontes, las crestas forman tabiques aplanados perpendiculares al eje de la mitocondria, pero en algunos protistas tienen forma tubular o discoidal.

Estudios recientes demostraron que la membrana de las crestas no se forma por invaginación de la membrana interna, sino que conforman un sistema membranoso aparte de la membrana interna y la externa. Se conectan a la membrana interna en puntos concretos que facilitan el transporte de metabolitos entre los distintos compartimentos de la mitocondria.

En la membrana de las crestas se llevan a cabo funciones relacionadas con el metabolismo oxidativo como la cadena respiratoria o la fosforilación oxidativa.

Entre ambas membranas queda delimitado un espacio intermembranoso que está compuesto de un líquido similar al hialoplasma; tiene una alta concentración de protones como resultado del bombeo de los mismos por los complejos enzimáticos de la cadena respiratoria. En él se localizan diversas enzimas que intervienen en la transferencia del enlace de alta energía del ATP, como la adenilato kinasa o la creatina quinasa. También se localiza la carnitina, una molécula implicada en el transporte de ácidos grasos desde el citosol hasta la matriz mitocondrial, donde serán oxidados (beta-oxidación).

La matriz mitocondrial o mitosol contiene menos moléculas que el citosol, aunque contiene iones, metabolitos a oxidar, ADN circular bicatenario muy parecido al de las bacterias, ribosomas tipo 55S (70S en vegetales), llamados mitorribosomas, que realizan la síntesis de algunas proteínas mitocondriales, y contiene ARN mitocondrial; es decir, tienen los orgánulos que tendría una célula procariota de vida libre. En la matriz mitocondrial tienen lugar diversas rutas metabólicas clave para la vida, como el ciclo de Krebs y la beta-oxidación de los ácidos grasos; también se oxidan los aminoácidos y se localizan algunas reacciones de la síntesis de urea y grupos hemo.

La principal función de las mitocondrias es la oxidación de metabolitos (ciclo de Krebs, beta-oxidación de ácidos grasos) y la obtención de ATP mediante la fosforilación oxidativa, que es dependiente de la cadena transportadora de electrones; el ATP producido en la mitocondria supone un porcentaje muy alto del ATP sintetizado por la célula. También sirve de almacén de sustancias como iones, agua y algunas partículas como restos de virus y proteínas.

Las mitocondrias poseen cuatro compartimentos a los cuales pueden llegar las proteínas:

La mayor parte de las proteínas destinadas a la membrana mitocondrial interna cuentan con secuencias de directrices internas que marcan su pertenencia como parte de la molécula. Antes de que esta proteína pueda entrar a la mitocondria, se piensa que pasa por diferentes fenómenos, por ejemplo, se tiene que encontrar en un estado desplegado o extendido. Las chaperonas como Hsp70 y Hsp90 participan en la preparación de los polipéptidos para su captación en las mitocondrias, incluyendo las que se dirigen de manera específica de las proteínas mitocondriales a la superficie citosólica de la membrana mitocondrial externa.

La membrana mitocondrial externa contiene un complejo importador de proteínas llamado complejo TOM, el cual incluye:

Las proteínas destinadas a la membrana mitocondrial interna o matriz deben pasar por el espacio intermembranoso y acoplarse a un segundo complejo importador de proteínas que se encuentra en la membrana mitocondrial interna, el complejo TIM.

La membrana mitocondrial interna contiene dos complejos TIM mayores: TIM22 y TIM23, la TIM22 se une a proteínas integrales de la membrana mitocondrial interna que contiene una secuencia directriz interna y la inserta en la bicapa lipídica, mientras que la TIM23 se une a proteínas que tienen una presecuencia en el amino terminal, que incluyen todas las proteínas de la matriz, reconoce y traslada a las proteínas a través de la membrana mitocondrial interna y hasta el compartimento acuoso interno. La translocación ocurre en sitios en los que las membranas mitocondriales externa e interna están muy próximas, de manera que la proteína importada puede cruzar ambas membranas al mismo tiempo.

El movimiento hacia la matriz está impulsado por el potencial eléctrico, el cual, a través de la membrana mitocondrial interna, actúa sobre la señal directriz con carga positiva. Cuando entra a la matriz, un polipéptido interactúa con las chaperonas mitocondriales que median la entrada al compartimiento acuoso. También se ha propuesto que las chaperonas actúan como motores generadores de fuerza que usan la energía derivada de la hidrólisis del ATP para “tirar” del polipéptido desplegado a través del poro de translocación, y también se propone que ayudan a la difusión del polipéptido a través de la membrana.

La científica estadounidense Lynn Margulis, junto con otros científicos, recuperó en torno a 1980 una antigua hipótesis, reformulándola como teoría endosimbiótica. Según esta versión actualizada, hace 'unos 2309 millones de años,[13]​ una célula procariota capaz de obtener energía de los nutrientes orgánicos empleando el oxígeno molecular como oxidante, se fusionó en un momento de la evolución con otra célula procariota o eucariota primitiva al ser fagocitada sin ser inmediatamente digerida, un fenómeno frecuentemente observado. De esta manera se produjo una simbiosis permanente entre ambos tipos de seres: la procariota fagocitada proporcionaba energía, especialmente en forma de ATP, y la célula hospedadora ofrecía un medio estable y rico en nutrientes a la otra. Este mutuo beneficio hizo que la célula invasora llegara a formar parte del organismo mayor, acabando por convertirse en parte de ella: la mitocondria. Otro factor que apoya esta teoría es que las bacterias y las mitocondrias tienen mucho en común, tales como el tamaño, la estructura, componentes de su membrana y la forma en que producen energía, entre otras características.

Esta hipótesis tiene entre sus fundamentos la evidencia de que las mitocondrias poseen su propio ADN, ARN, ribosomas y cromosomas y están recubiertas por su propia membrana. Según los análisis filogenéticos del ADN, el ARN ribosómico y el proteoma, las mitocondrias se originaron de una alfaproteobacteria similar a Rickettsia, perteneciente al orden Rickettsiales.[14]​ Otra evidencia que sostiene esta hipótesis es que el código genético del ADN mitocondrial no suele ser el mismo que el código genético del ADN nuclear.[15]​ A lo largo de la historia común la mayor parte de los genes mitocondriales han sido transferidos al núcleo, de tal manera que la mitocondria no es viable fuera de la célula hospedadora y ésta no suele serlo sin mitocondrias.

El ADN mitocondrial humano contiene información genética para 13 proteínas mitocondriales y algunos ARN;[12]​ no obstante, la mayoría de las proteínas de las mitocondrias proceden de genes localizados en el ADN del núcleo celular y que son sintetizadas por ribosomas libres del citosol y luego importadas por el organelo. Se han descrito más de 150 enfermedades mitocondriales, como la enfermedad de Luft o la neuropatía óptica hereditaria de Leber. Tanto las mutaciones del ADN mitocondrial como del ADN nuclear dan lugar a enfermedades genéticas mitocondriales que originan un mal funcionamiento de procesos que se desarrollan en las mitocondrias, como alteraciones de enzimas, ARN, componentes de la cadena de transporte de electrones y sistemas de transporte de la membrana interna; muchas de ellas afectan al músculo esquelético y al sistema nervioso central.

El ADN mitocondrial puede dañarse con los radicales libres formados en la mitocondria;[16]​ así, enfermedades degenerativas relacionadas con el envejecimiento, como la enfermedad de Parkinson, la enfermedad de Alzheimer y las cardiopatías, pueden estar relacionadas con lesiones mitocondriales.[12]

Existen protistas sin mitocondrias que carecen de ellas por una pérdida secundaria[17]​ o una degeneración de las mismas, para adaptarse a un modo de vida parásito, intracelular o anaerobio.

La fertilidad femenina se ve afectada por el envejecimiento, teniendo el pico de la capacidad de reproducción a los 25 años aproximadamente, el cual declina con la edad, disminuyendo considerablemente a partir de los 37 años. Numerosos estudios sugieren que una disminución de la calidad del oocito es el causante de la disminución de la capacidad reproductiva relacionada con la edad, y aunque los mecanismos subyacentes aún se desconocen, algunos científicos hipotetizan con que alteraciones en la mitocondria podrían ser los factores clave que medien la capacidad reproductiva (Benkhalifa et al., 2014; Ramalho-Santos et al., 2009; Schatten et al., 2014).

Como se ha comentado anteriormente, la función principal de las mitocondrias es la obtención de energía vía ATP ya sea por el Ciclo de Krebs o por la vía glucolítica, y son fundamentales para el funcionamiento de la células, ya que su deficiencia puede conllevar a la apoptosis (muerte) de la célula. Los procesos por los que pasa el oocito antes de la ovulación y fertilización requieren de ATP, así como los primeros pasos del desarrollo embrionario, cuya eficacia ha sido relacionada con la función y actividad mitocondrial (Benkhalifa et al., 2014; Pang et al., 2013). Las mitocondrias de oocitos maduros y embriones pre-implantados pasan por transformaciones en su estructura y en su distribución citoplasmática. En los oocitos, la mitocondria es ovalada y tiene una matriz celular densa. Una vez pasado el estadio de mórula, estos cambios estructurales resultan en un aumento de la producción de ATP y en su metabolismo oxidativo. Se ha observado que en algunos embriones incapaces de desarrollarse hay mitocondrias que no han sufrido esta modificación morfológica.

Principalmente, el oocito produce su energía vía fosforilación oxidativa casi totalmente, ya que la glucólisis se encuentra limitada por una baja expresión de la fosfofructoquinasa. Por el contrario, las células del cumulus oophorus tienen una gran capacidad glucolítica y le aportan al oocito piruvato por las uniones gap, para así poder producir ATP. La comunicación entre ambos tipos de células es bidireccional, haciendo que alteraciones en la actividad metabólica en el cúmulos oophorus pueda modificar la viabilidad de los oocitos. Una prueba de ello fue un estudio de 2014 realizado por Hsu et al. donde demostraban por primera vez que las mujeres con endometriosis, cuando se han usado técnicas de reproducción asistida, tienen una disminución de ATP por las células del cumulus que hace que el número de oocitos maduros y las tasas de implantación se vean alterados. Posiblemente esto sea porque se haya dado una disfunción mitocondrial.

Por otro lado, la utilización de hormonas en la estimulación ovárica podría afectar al sistema reproductor femenino, haciendo que aumente el número de células del cumulus en apoptosis, disminuyendo así el piruvato que llega a los oocitos, influyendo por tanto en su calidad (Dell’Aquila et al., 2009; Eichenlaub-Ritter et al., 2011).

El estrés oxidativo se produce por una inestabilidad entre la producción de especies reactivas de oxígeno (ROS) y las moléculas antioxidantes que lo neutralizan. Una mayor producción de ROS puede provocar un aumento del daño de las enzimas mitocondriales. Los niveles de producción de ROS se pueden ver alterados por factores intrínsecos al individuo como puede ser el estilo de vida —que hace que se acumule con los años—, obesidad, resistencia a insulina, endometriosis, síndrome de ovario poliquístico, etcétera. También, hay factores externos en las terapias de reproducción asistida, como pueden ser la exposición a la luz visible, un pH no ideal y la temperatura, los que pueden aumentar los niveles de producción de ROS. Es por todo ello que hay un aumento del estrés oxidativo que conlleva a una menor probabilidad de concepción en estas terapias. Aunque hay células dentro del tejido ovárico que podrían tener un efecto antioxidante, no es suficiente para combatirlo. Además, la capacidad antioxidante se va perdiendo con los años, por lo que una mujer de 38 años tendrá un aumento de estrés oxidativo comparado con el de una mujer de 32.

Se cree que el efecto negativo del estrés oxidativo para la concepción y el desarrollo del embrión viene dado porque afecta al ADN mitocondrial, lo que puede conllevar a una pérdida crítica de función y, por lo tanto, a una disminución de ATP. Hay estudios que también relacionan los niveles de calcio con fallos en la función mitocondrial.

El trasplante autólogo de mitocondrias se ha considerado como una opción terapéutica para aquellas mujeres que han tenido varios intentos fallidos de fertilización in vitro. AUGMENT (por sus siglas en inglés, germline mitochondrial energy transfer, Sinclair, 2013), por ejemplo, es un procedimiento que consiste en la obtención de precursores de células ováricas de la corteza ovárica mediante laparoscopia. Posteriormente se aislarían sus mitocondrias, las cuales están en condiciones óptimas, y se transferirían en el oocito junto con el esperma mediante inyección intracitoplasmática. Esta técnica no ha sido aprobada por la Administración de Medicamentos y Alimentos de Estados Unidos, y no es clara su eficacia. Sin embargo, la técnica ha funcionado en numerosas mujeres y ha permitido que pudieran concebir.



Escribe un comentario o lo que quieras sobre Mitocondrias (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!