x
1

Recta de Euler



La recta de Euler de un triángulo es una recta en la que están situados el ortocentro, el circuncentro y el baricentro de un triángulo;[1]​ incluye al punto de Exeter y al centro de la circunferencia de los nueve puntos notables de un triángulo escaleno. Se denomina así en honor al matemático suizo, Leonhard Euler, quien demostró la colinealidad de los mencionados puntos notables de un triángulo, en 1765.

Euler demostró que en cualquier triángulo el ortocentro, el circuncentro y el baricentro están alineados. Esta propiedad amplía su dominio de verdad para el centro de la circunferencia de los nueve puntos notables; que Euler no había demostrado para ese tiempo. En los triángulos equiláteros, estos cuatro puntos coinciden, pero en cualquier otro triángulo no lo hacen, y la recta de Euler está determinado por dos cualesquiera de ellos. El centro de la circunferencia de los nueve puntos notables se encuentra a mitad de camino a lo largo de la línea de Euler entre el ortocentro y el circuncentro , y la distancia desde el centroide del circuncentro es un medio que desde el baricentro hasta el ortocentro.

Otros puntos destacados que se encuentran en la recta de Euler son el punto de Longchamps, el punto Schiffler, el punto de Exeter y el punto far-out. Sin embargo, el incentro se encuentra en la recta de Euler solo para triángulos isósceles.

Sean A, B, C denotan los ángulos del vértice del triángulo de referencia, y sea x: y: z un punto variable en coordenadas trilineales, a continuación, la ecuación de la recta de Euler es:

Otra manera para representar la línea de Euler es en términos de un parámetro t. Comenzando con el circuncentro y el ortocentro:

Cada punto en la línea de Euler, excepto el ortocentro, se describe como

para algunos t.

En un triángulo ABC, se determinan D como el punto medio del lado BC y E como el punto medio del lado CA. Entonces AD y BE son medianas que se intersecan en el baricentro G. Trazando las perpendiculares por D y E se localiza el circuncentro O.

A continuación se prolonga la recta OG (en dirección a G) hasta un punto P, de modo que PG tenga el doble de longitud de GO (figura 1).

Al ser G baricentro, divide a las medianas en razón 2:1; es decir: AG=2GD. De este modo

.

Por otro lado, los ángulos AGP y DGO son opuestos por el vértice y por tanto iguales. Estas dos observaciones permiten concluir que los triángulos AGP y DGO son semejantes.

Pero de la semejanza se concluye que los ángulos PAG y ODG son iguales, y de este modo AP es paralela a OD. Finalmente, dado que OD es perpendicular a BC, entonces AP también lo será; es decir, AP es la altura del triángulo.

1. Se construye PG de modo que tenga el doble de longitud de GO.

2. Los triángulos AGP y DGO son semejantes.

3. Las rectas DO y AP son paralelas. Por tanto AP es la altura del triángulo.

Un argumento similar prueba que los triángulos BPG y EOG son semejantes y por tanto BP también es la altura. Esto demuestra que P es el punto de intersección de las alturas y por tanto P=H; es decir, P es el ortocentro.



Escribe un comentario o lo que quieras sobre Recta de Euler (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!