En topología, se dice que un espacio topológico es simplemente conexo cuando es conexo por caminos y su grupo fundamental es el grupo trivial. De forma equivalente, un espacio topológico es simplemente conexo si es conexo por caminos y toda aplicación continua que sea un lazo, es decir, que verifique para algún punto , es contractible de forma continua a dicho punto mediante una homotopía tal que y .
En un espacio simplemente conexo se cumple que entre todo par de puntos existe una única clase de homotopía de caminos, es decir, todos los caminos que los conectan son homotópos entre sí. El término "simplemente conexo" viene precisamente de esta propiedad: sólo existe una forma, salvo homotopía, de conectar con un camino cualquier par de puntos del espacio.
La noción de conexión simple es crucial en la conjetura de Poincaré.
Informalmente, un objeto es simplemente conexo si está formado por una sola pieza y no contiene agujeros que lo atraviesen.
Escribe un comentario o lo que quieras sobre Simplemente conexo (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)