x
1

Control estadístico



El control gráfico de procesos (CGP o SPC, del inglés statistical process control) ayuda al uso de gráficos de control, basándose en técnicas estadísticas, lo que permite usar criterios objetivos para distinguir variaciones de fondo de eventos de importancia. Casi toda su potencia está en la capacidad de monitorizar el centro del proceso y su variación alrededor del centro. Recopilando datos de mediciones en diferentes sitios en el proceso, se pueden detectar y corregir variaciones en el proceso que puedan afectar a la calidad del producto o servicio final, reduciendo desechos y evitando que los problemas lleguen al cliente final. Con su énfasis en la detección precoz y prevención de problemas, SPC tiene una clara ventaja frente a los métodos de calidad como inspección, que aplican recursos para detectar y corregir problemas al final del producto o servicio, cuando ya es demasiado tarde.

Además de reducir desechos, SPC puede tener como consecuencia una reducción del tiempo necesario para producir el producto o servicio. Esto es debido parcialmente a que la probabilidad de que el producto final se tenga que retrabajar es menor, pero también puede ocurrir que al usar SPC, identifiquemos los cuellos de botella, paradas y otros tipos de esperas dentro del proceso. Reducciones del tiempo de ciclo del proceso relacionado con mejoras de rentabilidad han hecho del SPC una herramienta valiosa desde el punto de vista de la reducción de costes y de la satisfacción del cliente final.

En la década de 1920, Walter A. Shewhart fue el primero en utilizar el Control Estadístico de Procesos. Después, W. Edwards Deming aplicó los métodos del SPC en los Estados Unidos durante La Segunda Guerra Mundial, mejorando con éxito la calidad en la producción de municiones y otros productos de importancia estratégica. Deming ha contribuido decisivamente a introducir los métodos del SPC en la industria japonesa después de la guerra.

Edwards creó la base para el gráfico de control y el concepto del control estadístico durante experimentos diseñados cuidadosamente. Mientras Shewhart se inspiraba en teorías matemáticas y estadísticas puras, descubrió que datos derivados de procesos físicos raramente producen una "curva de distribución normal" (una distribución gaussiana, también llamada "curva en campana"). Descubrió que las variaciones en los datos de producción no se comportan siempre de la misma manera que en la naturaleza (Movimiento browniano de partículas). Shewhart concluyó que mientras cada proceso muestra una variación, algunos procesos muestran variaciones controladas naturales dentro del proceso (causas comunes de variación), mientras otros muestran variaciones descontroladas que no están siempre presentes en el proceso causal.

La siguiente descripción se refiere más al sector industrial que al sector de servicios, aunque los principios de SPC se pueden aplicar a los dos sectores. Para una descripción y un ejemplo de cómo aplicar SPC al sector de servicios, refiérase a Roberts (2005). También se ha aplicado SPC con éxito para detectar cambios en el comportamiento organizativo con Detección de Cambios en Redes Sociales introducido por McCulloh.

Tradicionalmente, en procesos de producción en masa, se controlaba la calidad de la pieza acabada mediante inspecciones del producto al final del proceso; aceptando o rechazando cada pieza (o muestras de producción) basándose en los criterios de especificaciones. La diferencia del Control del Proceso estadístico es que usa herramientas estadísticas para observar el rendimiento del proceso de producción para prever desviaciones importantes que pueda resultar en el producto rechazado.

Existen dos tipos de variaciones en todos los procesos industriales y ambas variaciones causan variaciones posteriores en el producto final. Las primeras son variaciones de causa natural o común y pueden ser variaciones en temperatura, especificaciones en materias primas o electricidad etc. Estas variaciones son pequeñas y normalmente están cerca del valor medio. El modelo de variación sería similar a los modelos encontrados en la naturaleza y la distribución forma la curva de distribución normal (forma de campana). Las segundas son conocidas como causas especiales y suceden con menos frecuencia que las primeras.

Por ejemplo, una línea de producción de cajas de cereales puede estar diseñada para rellenar cada caja de cereales con 500 gramos de producto, pero algunas cajas pueden tener un poco más de 500 gramos, y otras pueden tener un poco menos, conforme a la distribución del peso neto. Si el proceso de producción, sus entradas, o su entorno cambia (por ejemplo, las máquinas de producción muestran señales de desgaste), esta distribución pueda cambiar. Por ejemplo, si las poleas se desgastan, la máquina que rellena las cajas con cereales puede empezar a introducir más cereales en cada caja que lo especificado. Si se permite continuar con este cambio sin estar controlado, se producirán más y más productos que no entran dentro de las tolerancias del fabricante o del consumidor, con el resultado de desechos. Mientras en este caso, el desecho está presente en la forma de producto “gratuito” para el consumidor, normalmente el desecho consiste en retrabajo o chatarra.

Observando en el momento justo qué ha pasado en el proceso que ha provocado un cambio, el ingeniero de calidad o cualquier miembro del equipo que está como responsable de la línea de producción puede solucionar la causa principal de la variación que ha entrado en el proceso y se corrige el problema.

El SPC también indica cuándo se debe tomar una acción dentro de un proceso, pero indica también cuando NO se deben tomar acciones. Un ejemplo es una persona que le gustaría mantener un peso equilibrado y toma medidas de peso cada semana. Una persona que no entiende los conceptos del SPC pueda empezar una dieta cada vez que su peso incrementa, o comer más cada vez que su peso disminuye. Este tipo de acción puede ser perjudicial y puede generar más variación en peso. SPC se justifica en una variación del peso normal y una indicación mejorada de cuándo la persona está ganando o perdiendo peso.



Escribe un comentario o lo que quieras sobre Control estadístico (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!