x
1

Ecuación diferencial de primer orden



Una ecuación diferencial ordinaria de primer orden es una ecuación diferencial ordinaria donde intervienen derivadas de primer orden respecto a una variable independiente. Es una relación en la que intervienen la variable dependiente, la función incógnita y su derivada de primer orden.[1]

Estas ecuaciones, junto con su condición inicial, se pueden encontrar expresadas en forma explícita, llamada también "ecuación resuelta respecto a su primera derivada" [2]​ en esta forma:

(1a)

O en su forma implícita:

(1b)

Si mediante operaciones algebraicas es posible expresar la ecuación diferencial en la siguiente forma:

(2a)

Se dirá que es una ecuación diferencial de variables separables. De este modo, en cada miembro de la ecuación se tendrá una única variable. Para resolver este tipo de ecuaciones basta con integrar en cada miembro:

(2b)

Una ecuación de la forma:

(left)

Es homogénea siempre que la función f no dependa de x e y aisladamente, sino únicamente de sus razones y/x o bien x/y. Así pues las ecuaciones homogéneas adoptan la forma[3]​:

(3a)

Se dice que una ecuación es homogénea si la función f(x, y) es fraccionaria y además el grado de los polinomios de numerador y denominador son los mismos. Por ejemplo:

sería homogénea ya que todos los términos de ambos polinomios son de grado 3. Así se procede dividiendo tanto numerador como denominador por o en función de qué cambio haga más simple su resolución. Llegados a este caso según la elección se puede optar por uno de los dos cambios análogos, que son:

o bien

Así se simplifica enormemente y suele quedar separable. Para finalizar solo resta deshacer el cambio, sustituyendo las u(x,y) por su valor como función que se ha establecido.

El caso anterior puede generalizarse a una ecuación diferencial de primer orden de la forma:

(3a)

introduciendo la variable u = y/x; la solución de la anterior ecuación viene dada por:

(3b)

La ecuación diferencial lineal de primer orden tiene la forma:

(4a)

Y la solución de la misma viene dada por:

(4b)

En el caso particular y , la solución es:

(4c)

Una ecuación de Bernoulli es aquella que tiene la forma:

(5a)

Donde P(x) y Q(x) son funciones continuas cualesquiera. Su solución para α > 1 viene dada por:

(5b)

Dicha solución directa puede obtenerse aplicando paso a paso el siguiente método:



Escribe un comentario o lo que quieras sobre Ecuación diferencial de primer orden (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!