Tradicionalmente en matemática, una función aditiva es una función que preserva la operación suma:
para cualquiera de dos elementos x e y en el dominio. Así por ejemplo, cualquier transformación lineal es aditiva. Cuando el dominio son los números reales, esta función corresponde a la ecuación funcional de Cauchy.
En teoría de números, una función aditiva es una función aritmética f(n) que va desde los enteros positivos n tales que cada vez que a y b son coprimos, la función del producto es la suma de las funciones.
Note que cualquier homomorfismo f entre grupos abelianos es "aditivo" según la primera definición. El resto de este artículo se refiere a las funciones aditivas usando esta segunda definición de la teoría de números.
Una función aditiva f(n) es completamente aditiva o totalmente aditiva si f(ab) = f(a) + f(b) se cumple para todos los enteros positivos a y b, inclusive aquellos que no son coprimos.
Toda función completamente aditiva es aditiva, pero no viceversa.
A partir de cualquier función aditiva f(n) es fácil crear una función multiplicativa relacionada g(n), utilizando la propiedad de que cuando a y b son coprimos se cumple lo siguiente:
Un ejemplo es la función g(n) = 2f(n) − f(1).
Escribe un comentario o lo que quieras sobre Función aditiva (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)