x
1

Índice de Gini



El coeficiente de Gini es una medida de la desigualdad ideada por el estadístico italiano Corrado Gini. Normalmente se utiliza para medir la desigualdad en los ingresos, dentro de un país, pero puede utilizarse para medir cualquier forma de distribución desigual. El coeficiente de Gini es un número entre 0 y 1, donde 0 se corresponde con la perfecta igualdad (todos tienen los mismos ingresos) y donde el valor 1 se corresponde con la perfecta desigualdad (una persona tiene todos los ingresos y los demás ninguno). El índice de Gini es el coeficiente de Gini expresado en referencia a 100 como máximo, en vez de 1, y es igual al coeficiente de Gini multiplicado por 100. Una variación de dos centésimas del coeficiente de Gini (o dos unidades del índice) equivale a una distribución de un 7% de riqueza del sector más pobre de la población (por debajo de la mediana) al más rico (por encima de la mediana).

Aunque el coeficiente de Gini se utiliza sobre todo para medir la desigualdad en los ingresos, también puede utilizarse para medir la desigualdad en la riqueza. Este uso requiere que nadie disponga de una riqueza neta negativa.

El coeficiente de Gini se calcula como una proporción de las áreas en el diagrama de la curva de Lorenz. Si el área entre la línea de perfecta igualdad y la curva de Lorenz es a, y el área por debajo de la curva de Lorenz es b, entonces el coeficiente de Gini es a/(a+b).

Esta proporción se expresa como porcentaje o como equivalente numérico de ese porcentaje, que es siempre un número entre 0 y 1. El coeficiente de Gini se calcula a menudo con la Fórmula de Brown, que es más práctica:

De forma resumida, la Curva de Lorenz es una gráfica de concentración acumulada de la distribución de la riqueza superpuesta a la curva de la distribución de frecuencias de los individuos que la poseen, y su expresión en porcentajes es el índice de Gini.



Escribe un comentario o lo que quieras sobre Índice de Gini (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!