x
1

Red compleja



En el contexto de la ciencia de redes,[1]​ una red compleja se refiere a una red (modelada como grafo) que posee ciertas propiedades estadísticas y topológicas no triviales que no ocurren en redes simples; p.e., distribuciones de grado que siguen leyes de potencia, estructuras jerárquicas, estructuras comunitarias, longitud entre cualesquiera dos entes del sistema corto, o alta cohesividad local (medida a través del coeficiente de agrupamiento). Ejemplo de redes con tales características en la naturaleza son las redes sociales,[2]​ las redes neuronales, las redes de tráfico aéreo y las redes tróficas, entre muchas otras.

Una red[3]​ o grafo se define por un conjunto de elementos llamados nodos o vértices y otro conjunto, de elementos denominados enlaces o aristas. Cada enlace corresponde a un par no-ordenado de nodos. Si consideramos los enlaces como pares ordenados, diremos que es una red dirigida o grafo dirigido. Si cada enlace tiene asignado un valor numérico , diremos que la red es ponderada y el valor será llamado peso o ponderación del enlace .

Dos nodos de una red se dicen adyacentes si estos están conectados por un enlace. Se dirá que un enlace es incidente en un nodo si dicho enlace es de la forma para algún en . El vecindario de , generalmente denotado por , se define como el conjunto de los tales que . El conjunto será llamado vecindario inclusivo de .

Si y tal que , se dice que el par es una subred (o subgrafo) de . Si diremos que es la sub-red inducida por .

Un {clique} (o {red completa}), denotada por , es una red en la que todo par de nodos esta conectado por un enlace en . Un clique se dice maximal si no puede agregarse otro nodo a sin que este deje de ser un clique en .

Básicamente, en este tipo de redes el conjunto de nodos puede escribirse como la unión disjunta de dos conjuntos y de manera que en la red no hay enlaces de la forma con y . En la figura puede verse un ejemplo de este tipo de redes.


La matriz de adyacencia de una red es una matriz de tal que

Esta matriz nos permite representar de manera algebraica la estructura de red.



Escribe un comentario o lo que quieras sobre Red compleja (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!