En matemáticas se dice que dos figuras geométricas son semejantes si tienen la misma forma sin importar los tamaños entre ellos.
Una semejanza entre dos figuras geométricas viene definida exclusivamente por la condición de que la distancia entre cualquier par de puntos de la primera figura y dividida entre la distancia de sus correspondientes puntos de la segunda figura y es constante, este valor se llama razón de semejanza :
Una semejanza se puede expresar como una composición de rotaciones, traslaciones, y reflexiones. Por lo tanto, la semejanza puede modificar el tamaño y la orientación de una figura, pero no altera su forma.
Se reúnen estas dos propiedades equivalentes en la siguiente ecuación:
Por lo tanto, dos triángulos son semejantes si tienen similar forma.
En el caso del triángulo, la forma solo depende de sus ángulos. Se puede simplificar así la definición: dos triángulos son semejantes si sus ángulos son iguales uno a uno.
En la figura, los ángulos correspondientes son A = A', B = B' y C = C'. Para denotar que dos triángulos ABC y A'B'C' son semejantes se escribe ABC ~ A'B'C', donde el orden indica la correspondencia entre los ángulos: A, B y C se corresponden con A', B' y C', respectivamente. Una similitud tiene la propiedad de multiplicar todas las longitudes por un mismo factor. Por lo tanto las razones longitud imagen / longitud origen son todas iguales, lo que da una segunda caracterización de los triángulos semejantes: Dos triángulos son semejantes si las razones de los lados correspondientes son congruentes.
Propiedad reflexiva, refleja o idéntica
Todo triángulo es semejante a sí mismo.
Propiedad idéntica o simétrica
Si un triángulo es semejante a otro, aquel es semejante al primero.
Propiedad transitiva
Si un triángulo es semejante a otro, y este a su vez es semejante a un tercero, el primero es semejante al tercero.
Estas tres propiedades implican que la relación de semejanza entre dos triángulos es una relación de equivalencia.
Todas las paralelas a un lado de un triángulo que no pase por el vértice opuesto, determina con las rectas a las que pertenecen los otros dos lados, un triángulo semejante al dado.
Hipótesis:
Tesis:
Dando lugar a tres casos:
Si corta a los lados AB y BC por puntos interiores a ellos:
Haremos una primera consideración, referida a los ángulos, y la llamaremos (1):
Por otra parte, en virtud del corolario del Teorema de Tales se tiene:
Si por M se traza una paralela al lado AB, esta interseca al lado AC en un punto N, y nuevamente por el corolario del Teorema de Tales tenemos:
Pero dado que AN = LM, por ser lados opuestos del paralelogramo ALMN, reemplazando en se obtiene:
Luego de (1) y (2), resulta:
r corta a las rectas de los lados AB y BC por puntos exteriores a ellos, sobre las semirrectas de origen B que los contienen.
Consideramos BLM como si fuera el triángulo dado, y BAC el triángulo nuevo, y por el caso I de la demostración, es:
Si corta los lados AB y BC en puntos que pertenecen a las semirrectas opuestas a las que sirven de sostén a dichos lados.
Sobre la semirrecta de origen B que contiene al punto A, se construye BN=BL y por el extremo N del segmento construido, una paralela a AC (s) que corta la recta de BC por O.
Quedan entonces por el caso I, semejanza que llamaremos .
Teniendo en cuenta los triángulos BNO y BLM, se observa:
Y siendo BNO=BLM es BNO ~ BLM por el primer corolario de la definición.
De y , y por carácter transitivo:
La posibilidad de aumentar el tamaño de una figura sin modificar su forma es tan obvia y natural que durante milenios se pensó que era una consecuencia de los axiomas de la geometría, y se trató en vano de demostrarlo desde la Grecia antigua. Sin embargo, al estudiar otras geometrías, las no euclidianas, los matemáticos del siglo XIX, entre ellos Bernhard Riemann y Nikolái Lobachevski se dieron cuenta de que esto solo sucedía en los espacios euclídeos, es decir, sin curvatura.
Se puede definir una geometría sobre la esfera, por ejemplo: Los segmentos son los caminos más cortos que unen sus extremos y las rectas son las líneas geodésicas, a semejanza de los ecuadores de la esfera. El análogo de una homotecia se construye así: se escoge un punto O de la superficie como centro de la homotecia, y para definir la imagen de otro punto A se traza la geodésica que pasa por O y A (que es única si A no es el punto diametralmente opuesto a O), consideramos que O es el origen de esta línea y A el punto de abscisa 1. La imagen A' será el punto de abscisa k, donde k es la razón de la homotecia. En la figura se ha tomado k = 3 y se han construido las imágenes de B y C también.
Se observa que la imagen del "triángulo" ABC es el "triángulo A'B'C', es decir que los catetos A'B', A'C' y B'C' son segmentos de líneas geodésicas, y que A'B'C' merece ser llamado triángulo semejante (por no decir homotético) al triángulo ABC.
Al aplicar la construcción precedente al pequeño triángulo ABC de la superficie de la esfera (pequeño en comparación con el diámetro), la suma de sus ángulos será ligeramente superior a π radianes (180º), pero el triángulo A'B'C' tendrá ángulos de mayor amplitud, siendo su suma mucho mayor que π radianes, como se ve en la figura. El aumento de tamaño implica aquí claramente un cambio de forma.
En conclusión, los triángulos semejantes permiten saber en que clase de espacio nos hallamos, uno euclidiano, o con curvatura positiva (como la esfera), o con curvatura negativa (espacio hiperbólico), y la doble caracterización de los triángulos similares (mismos ángulos y cocientes de los lados iguales) en la geometría usual no es ni anecdótico ni anodino.
Escribe un comentario o lo que quieras sobre Semejanza (geometría) (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)