La doctrina clásica sobre el sistema nervioso dicta que es un sistema biológico que poseen los animales que contiene un conjunto de células especializadas en la conducción de señales eléctricas llamadas neuronas a las que dan soporte otras células del sistema como las células gliales. Según esa doctrina clásica las neuronas tienen la función de coordinar las acciones de los seres vivos del reino animal por medio de señales químicas y eléctricas enviadas de un lugar a otro del organismo. La mayor parte de los animales pluricelulares tienen sistemas nerviosos con funciones básicas similares, aunque con un grado de complejidad muy variable. Únicamente carecerían de él los animales que no tienen tejidos y órganos bien diferenciados, como los poríferos (esponjas), placozoos y mesozoos. Sin embargo, esta doctrina clásica está siendo cuestionada en las últimas décadas por los descubrimientos sobre la existencia de señales eléctricas en las plantas y el uso que estas hacen de ellas. En base a esos descubrimientos, algunos científicos han propuesto la necesidad de crear una área científica llamada neurobiología de las plantas y la existencia de un sistema nervioso en las plantas. Esa propuesta ha provocado que en la comunidad ciéntifica existe una disputa entre aquellos que piensan que se debe hablar de sistema nervioso de las plantas y los que están en contra. Lo inamovible de las posiciones en el debate científico por ambas partes ha llevado a proponer una solución al debate que consiste en redefinir el concepto de sistema nervioso mediante criterios únicamente fisiológicos y evitar los criterios filogenéticos.
El sistema nervioso capta estímulos del entorno, (estímulos externos) o señales del mismo organismo (estímulos internos), procesa la información y genera respuestas diferentes según la situación. A modo de ejemplo podemos considerar un animal que a través de las células sensibles a la luz de la retina capta la proximidad de otro ser vivo. Esta información es transmitida mediante el nervio óptico al cerebro que la procesa y emite una señal nerviosa que a través de los nervios motores provoca la contracción de ciertos músculos con el objetivo de desplazarse en dirección contraria al peligro potencial.
Las neuronas son las células que constituyen la unidad fundamental básica del sistema nervioso, se encuentran conectadas entre sí de manera compleja y tienen la propiedad de generar, propagar, codificar y conducir señales por medio de gradientes electroquímicos (electrolitos) a nivel de membrana axonal y de neurotransmisores a nivel de sinapsis y receptores. Los tejidos de sostén o mantenimiento están formado por las células gliales (neuroglia) y un sistema vascular especializado.
La neurona al igual que todas las células, dispone de un citoplasma en el que existe un núcleo y diversos orgánulos como las mitocondrias y el aparato de Golgi. Su particularidad está en que del cuerpo celular arrancan diversas prolongaciones ramificadas que se llaman dendritas y otra única que recibe el nombre de axón. Las dendritas reciben la señal nerviosa en dirección al cuerpo celular, mientras que el axón la emite desde el cuerpo celular a otra neurona o una célula muscular, el axón puede dividirse en miles de ramas, cada una de las cuales lleva a la información a una célula diferente. La estructura básica del sistema nervioso está formada por redes de neuronas interconectadas por sus dendritas y axones. La zona de conexión entre dos neuronas recibe el nombre de sinapsis.
Con base en la división morfológica entre las distintas partes anatómicas de las neuronas y sus diversas formas de organización se clasifican en cuatro tipos:
Las neuronas se clasifican también en tres grupos generales según su función:
Las neuronas se pueden comunicar entre sí gracias a impulsos eléctricos que circulan a través de sus prolongaciones. El impulso se denomina potencial de acción y es unidireccional desde el cuerpo celular al axón. En estado de reposo existe una diferencia de potencial entre el interior y el exterior de la neurona ya que ambos espacios están separados por la membrana celular, a dicha diferencia de potencial se la denomina potencial de membrana en reposo.
Cuando se genera un potencial de acción o impulso nervioso, se producen dos fenómenos consecutivos que afectan a la membrana celular, alteran su permeabilidad a los iones Na+ y K+ y modifican el potencial de membrana en reposo. En primer lugar se abren los canales que facilitan la entrada de Na+ a la célula (despolarización), posteriormente se abren los canales de la membrana que hacen posible la salida de K+ de la célula (repolarización). El potencial de acción así generado se transmite unidireccionalmente a través del axón hasta alcanzar la siguiente conexión (sinapsis).
Se llama sinapsis a la comunicación funcional que se establece entre dos neuronas o entre una neurona y una célula muscular, mediante la sinapsis el impulso nervioso puede circular a través de varias neuronas enlazadas. La neurona de la que parte el impulso se llama presináptica y la que lo recibe se denomina postsináptica. Entre ambas existe un espacio que recibe el nombre de espacio sináptico, el cual separa las membranas de las dos células aledañas. Pueden distinguirse dos tipos de sinapsis:
Un neurotransmisor es una sustancia química producida por las neuronas que se libera al espacio sináptico de una sinapsis química por la acción de un impulso nervioso o potencial de acción. Interacciona con un receptor específico en la neurona postsináptica donde produce una determinada respuesta que puede ser excitatoria o inhibitoria. Los neurotransmisores son un aspecto fundamental en la transmisión del impulso nervioso y resultan de gran interés en farmacología, pues muchos de los medicamentos que tienen alguna acción sobre el sistema nervioso actúan sobre ellos.
Existen diferentes sustancias que actúan como neurotransmisores, algunas de las más importantes son las siguientes:
Las células gliales (conocidas también genéricamente como glía o neuroglía) son células del sistema nervioso que desempeñan, de forma principal, la función de soporte y protección de las neuronas. En los humanos se clasifican según su localización o por su morfología y función. Las diversas células de la neuroglía constituyen más de la mitad del volumen del sistema nervioso de los vertebrados. Las neuronas no pueden funcionar en ausencia de las células gliales.
Según su ubicación dentro del sistema nervioso ya sea central o periférico, las células gliales se clasifican en dos grandes grupos:
Por su morfología o función, entre las células gliales se distinguen las células macrogliales (astrocitos, oligodendrocitos ), las células microgliales (entre el 10 y el 15 % de la glía) y las células ependimarias.
Pesa alrededor de 2 kilogramossistema nervioso central que está compuesto por el encéfalo y la médula espinal, y el sistema nervioso periférico que incluye todos los nervios periféricos, tanto los nervios motores como los nervios sensitivos.
y anatómicamente puede dividirse en dos partes bien diferenciadas para facilitar su estudio: elDurante el desarrollo del embrión, el tubo neural primitivo da origen a la formación de tres vesículas encefálicas que se denominan prosencéfalo, mesencéfalo y rombencéfalo. Posteriormente el prosencéfalo se divide y da origen al telencéfalo y el diencéfalo, mientras que el rombencéfalo da origen al metencéfalo y el mielencéfalo. El mesencéfalo permanece sin dividirse. De esta forma se constituyen las cinco porciones de las que surgen todas las partes del encéfalo totalmente desarrollado.
Se puede describir el sistema nervioso según su anatomía o según su funcionalidad.
El sistema nervioso central está formado por el encéfalo y la médula espinal, se encuentra protegido por tres membranas, las meninges. En su interior existe un sistema de cavidades conocidas como ventrículos, por las cuales circula el líquido cefalorraquídeo.
El sistema nervioso periférico está formado por los nervios craneales y espinales, que emergen del sistema nervioso central y que recorren todo el cuerpo, conteniendo axones de vías neurales con distintas funciones y, por los ganglios periféricos que se encuentran en el trayecto de los nervios y que contienen cuerpos neuronales, los únicos fuera del sistema nervioso central.
Una división menos anatómica pero más funcional, es la que divide al sistema nervioso de acuerdo al rol que cumplen las diferentes vías neurales, sin importar si estas recorren parte del sistema nervioso central o el periférico:
El sistema nervioso puede sufrir numerosas enfermedades de diferente origen: infecciosas, hereditarias, degenerativas, cerebrovasculares (por afectación de los vasos sanguíneos), desmielinizantes o tumorales.
Se cree que la primera neurona surgió hace 600 millones de años, durante el período Ediacárico, en animales diblásticos como los cnidarios. El acto reflejo es la unidad básica de la actividad nerviosa integrada y podría considerarse como el circuito primordial del cual partieron el resto de las estructuras nerviosas. Este circuito pasó de estar constituido por una sola neurona multifuncional en los diblásticos a dos tipos de neuronas en el resto de los animales llamadas aferentes y eferentes. En la medida que se fueron agregando intermediarios entre estos dos grupos de neuronas con el paso del tiempo evolutivo, como interneuronas y circuitos de mayor plasticidad, el sistema nervioso fue mostrando un fenómeno de concentración en regiones estratégicas dando pie a la formación del sistema nervioso central, siendo la cefalización el rasgo más acabado de estos fenómenos.
En la transmisión de señales existen medidas como la redundancia, que consiste en la creación de vías alternas que llevan parte de la misma información garantizando su llegada a pesar de daños que puedan ocurrir.
La mielinización de los axones en la mayoría de los vertebrados y en algunos invertebrados como anélidos y crustáceos es otra medida de optimización. Este tipo de recubrimiento incrementa la rapidez de las señales y disminuye el calibre de los axones ahorrando espacio y energía.
Otra característica importante es la presencia de metamerización del sistema nervioso, es decir, aquella condición donde se observa una subdivisión de las estructuras corporales en unidades que se repiten con características determinadas. Los tres grupos que principalmente muestran esta cualidad son los artrópodos, anélidos y cordados.
La centralización hace referencia a la tendencia evolutiva de las neuronas a agruparse en centros localizados de integración en los que existen numerosas células que interactúan entre sí para procesar los estímulos y realizar acciones cada vez más complejas. Esta centralización progresiva es la que acabó por originar un sistema nervioso central y un encéfalo. Entre los animales actuales que no poseen centralización se encuentran las medusas cuyo sistema nervioso es una red difusa de neuronas interconectadas sin que existe ningún punto central de control.
La cefalización hace referencia a la tendencia evolutiva del tejido nervioso a agruparse en el área de la cabeza. Este proceso se ha visto favorecido por la existencia de órganos de los sentidos en el polo cefálico. La cefalización ya está presente en los platelmintos que contienen ganglios cefálicos que hacen las funciones de cerebro y puede observarse en los artrópodos, los cefalópodos y por supuesto en todos los vertebrados.
Los animales diblásticos o radiados, una agrupación parafilética que engloba tanto cnidarios como a ctenóforos, normalmente cuentan con una red de plexos subectodérmicos sin un centro nervioso aparente, pero algunas especies ya presentan condensados nerviosos en un fenómeno que se entiende como el primer intento evolutivo para conformar un sistema nervioso central. Algunas disposiciones de estos condensados, como los anillos nerviosos en las medusas, recuerdan tendencias posteriores vistas en los cicloneuros.
En los animales triblásticos o bilaterales, un grupo monofilético, existen dos tipos de planes corporales llamados protóstomos y deuteróstomos que poseen a su vez tres tipos de disposiciones del sistema nervioso: cicloneuros, hiponeuros y epineuros. Una diferencia esencial es que en protostomados y deuterostomados el SNC se encuentra en posiciones invertidas. Durante muchos años, se consideró que estas y otras diferencias indicaban planes corporales y SNC esencialmente distintos (por la posición relativa del SNC, sistema digestivo y vaso circulatorio principal).
Los animales protóstomos, que son triblásticos, como los platelmintos, nemátodos, moluscos, anélidos y artrópodos cuentan con un sistema nervioso hiponeuro, es decir es un sistema formado por ganglios cerebrales y cordones nerviosos ventrales. Los ganglios que forman el cerebro se sitúan alrededor del esófago, con conectivos periesofágicos que los unen a las cadenas nerviosas que recorren ventralmente el cuerpo del animal, en posición inferior respecto al tubo digestivo. Tal modelo de plan corporal queda dispuesto de esa forma cuando en la gástrula acontece un proceso embriológico llamado gastrorrafia.
Los animales deuteróstomos, que son triblásticos, se dividen en dos grupos según su simetría, radial o bilateral, o la disposición de su sistema nervioso, cicloneuros o epineuros. Dentro de los cicloneuros se encuentran los equinodermos (de simetría radial) y los hemicordados. El centro nervioso es un anillo situado alrededor de la boca (subectodérmico o subepidérmico). Dentro del grupo de los epineuros se encuentran los urocordados, los cefalocordados y los vertebrados en la que presentan un cordón nervioso hueco y tubular, dorsal al tubo digestivo. A partir de este cordón, en animales más complejos, se desarrolla el encéfalo y la médula espinal. Tales modelos de planes corporales quedan dispuestos de esa forma cuando en la gástrula acontecen unos procesos embriológicos llamados isoquilia en los cicloneuros o nototenia en el caso de los epineuros.
El filo de los cnidarios incluyen entre otros organismos las hidras y medusas. Presentan la forma más simple y primitiva de sistema nervioso que recibe el nombre de red nerviosa. En una red nerviosa las neuronas están dispersas sin una organización estructural compleja y no existe encéfalo.
El filo de los platelmintos incluye unas 20 000 especies, entre las que se incluyen algunas de vida parasitaria como la taenia solium o solitaria que vive en el intestino humano. Su sistema nervioso presenta inicios de cefalización y 2 cordones nerviosos longitudinales que pueden considerarse un sistema nervioso central primitivo. Por otra parte el tejido nervioso contiene ya numerosas interneuronas, es decir neuronas de conexión entre las sensitivas y las motoras que aumentan la complejidad de los circuitos.
El grupo de los anélidos incluye numerosas especies, siendo una de las más características la lombriz de tierra. Estos animales cuentan con un sistema nervioso formado por un cordón nervioso ventral doble y dos ganglios situados en cada metámero. Poseen un cerebro que está formado por la unión de dos ganglios dorsales que se comunican mediante conectivos al cordón nervioso ventral.
Dentro del grupo de los moluscos se encuentran los cefalópodos (calamares y pulpos). Estos tienen un cerebro y sistema sensorial que ha alcanzado gran desarrollo. El cerebro es comparativamente de tamaño muy grande en relación al de otros invertebrados por lo que los cefalópodos alcanzan elevadas capacidades de memoria y aprendizaje.
El grupo de los bivalvos que incluye las almejas y mejillones tiene un sistema nervioso menos desarrollado que el de los cefalópodos, probablemente por su vida sedentaria. Carecen de encéfalo pero dispones de varios ganglios que controlan diversas funciones, entre ellos dos ganglios cerebro-pleurales a ambos lados del esófago que controlan los órganos sensoriales y la cavidad del manto (moluscos).
Los artrópodos son los animales más abundantes y variados de la tierra, incluyen los insectos, arácnidos y crustáceos. Poseen un sistema nervioso bien desarrollado que les permite tener un comportamiento complejo y coordinado. Su sistema nervioso central es de tipo ganglionar y consiste en una cadena de ganglios segmentarios unidos mediante un cordón nervioso ventral, algunos ganglios se fusionan en la región cefálica y dan lugar a un cerebro.
El grupo de los equinodermos incluye la estrella de mar y el erizo de mar. Estos animales poseen sistema nervioso pero no cuentan con un encéfalo que centralice la actividad. Disponen de tres anillos nerviosos situados en planos diferentes alrededor del tubo digestivo.
El sistema nervioso de los vertebrados consta de un encéfalo bien desarrollado y una médula espinal. El sistema nervioso periférico está formado por diferentes nervios que se conectan con el sistema nervioso central. Estos nervios son de tipo aferente (transportan información sensorial hacia el sistema nervioso central) o eferentes (transportan órdenes motoras desde el cerebro hasta los órganos). Existen asimismo ganglios periféricos que son agrupaciones de neuronas enlazadas a algunos de los nervios pero no deben confundirse con el sistema ganglionar de los artrópodos.
Escribe un comentario o lo que quieras sobre Sistema neurológico (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)