El cálculo mental consiste en realizar cálculos matemáticos utilizando solo el cerebro, sin ayudas de otros instrumentos como calculadoras o incluso lápiz y papel o los dedos para contar fácilmente. Algunos calculistas pueden realizar operaciones matemáticas muy complejas (como productos de números de 5 más cifras) mediante el cálculo mental. Sin embargo, los mejores matemáticos muchas veces no coinciden con los mejores calculistas. El cálculo mental a menudo implica el uso de técnicas específicas diseñadas para tipos particulares de problemas. Las personas con una capacidad inusualmente alta para realizar cálculos mentales se denominan calculistas mentales o "calculistas ultrarrápidos".
Igualmente, los grandes calculistas no son los de mejor memoria,Guiness de los records de ambas especialidades (cálculo y memoria) suelen ser siempre diferentes.
dado que las técnicas del cálculo mental y las de potenciación de la memoria son diferentes. Los campeones del mundo y los que figuran el libroLa práctica del cálculo mental ayuda al estudiante para que ponga en juego diversas estrategias. Es la actividad matemática más cotidiana y la menos utilizada en el aula. Entre sus beneficios se encuentran: desarrollo del sentido numérico y de habilidades intelectuales como la atención y la concentración, además de gusto por las matemáticas. Para su enseñanza es aconsejable mostrar el descubrimiento de reglas nemotécnicas.
Si no hay acarreos, es decir, si ninguna suma parcial es mayor que 9, las sumas se pueden realizar directamente. Lo mismo ocurre con las restas.
En caso contrario, hay que saber modelar los números de los que se dispone, a veces convirtiendo una suma de dos números en una suma más sencilla de más sumandos, y algo análogo para las restas. Calculistas como Alberto Coto y Jorge Arturo Mendoza Huertas proponen realizar las sumas siempre de izquierda a derecha, aunque haya acarreos.
Ejemplos:
Multiplicar por 2 es lo mismo que sumarle al número inicial el mismo número. La duplicación y la mediación son un pilar fundamental de las matemáticas egipcias.
Ejemplo: multiplicar 173 × 16:
La multiplicación y la mediación sirven, en general, para calcular el producto de un número cualquiera por el producto de potencias de 2 y de 5. Multiplicar por 5 es lo mismo que calcular la mitad del número inicial multiplicado por 10, lo que a veces es más fácil de hallar
Ejemplo: multiplicar 376 × 125
Es útil conocer algunas potencias de 2 y 5 para realizar estas operaciones con soltura.
También se puede utilizar este método para multiplicar por otros números que son sumas de (pocas) potencias de 2 o de 5, como 12 (8 + 4), 130 (125 + 5), 18 (16 + 2), etc.
Multiplicar por 9, 11, 99, 101..., es decir, por una potencia de 10 menos 1 (o más 1), se puede hacer mentalmente con un poco de práctica mediante la suma (o resta) de 10n veces el número inicial más (o resta) del número inicial. Sin embargo, es fácil cometer errores al sumar o restar al mezclar, por ejemplo, unidades con decenas.
Ejemplo: multiplicar 28 × 99
Otro ejemplo: multiplicar 37 × 121
Además multiplicar por 11 resulta fácil: se separan las cifras y luego se escribe siempre cifra de las unidades y seguidamente se van sumando grupos de dos cifras seguidas poniendo el resultado o la última cifra de la suma llevando un acarreo de 1 si la suma es mayor que 10, y finalmente se coloca la cifra más significativa, así:
Multiplicar:
Análogamente, se puede aplicar esto a las multiplicaciones por potencias de 2, o de 5, más 1. Por ejemplo, 26, 17, 124 y 63.
Primero, basta recordar lo siguiente:
El procedimiento es este:
Una variante es tomar por exceso y no por defecto el cociente de la división del primer paso. Esto significa que se suma uno al cociente y al resto se le restan 3. Así, en lugar de un número de la forma 3 × Q + R (donde R = 1 o 2) tenemos uno de la forma 3 × (Q + 1) + R' (donde R' = -2 ó -1, respectivamente), y al resultado final se le restará 74 o 37 (porque el nuevo "resto" de la división es negativo).
Más ejemplos:
Si uno de los factores del producto no es 37 pero sí un múltiplo, se puede reformular la multiplicación haciendo que uno de los factores sea 37. Probemos por ejemplo con los siguientes cuadrados:
Métodos así funcionan cuando uno de los factores de la multiplicación tiene a su vez un múltiplo que es una concatenación de nueves. Se trata pues de encontrar ese múltiplo. Otro ejemplo notable es el número 142857. No solo el producto de este número por 7 es igual a 999999, sino que su tabla de multiplicar es muy sencilla, ya que en la cadena 142857142857... basta con tomar seis dígitos consecutivos a partir de una posición dada:
Probemos a calcular el cuadrado de este número de seis cifras (!):
Las llamadas igualdades notables pueden aplicarse al cálculo mental:
Las dos primeras identidades se pueden aplicar al cálculo de cuadrados perfectos. Supongamos que queremos calcular 52². 52 = 50 + 2, así que aplicamos la identidad correspondiente al cuadrado de la suma, donde a = 50 y b = 2.
Más ejemplos:
Con este método también es fácil calcular el cuadrado de un número con una cifra entera y una decimal, solo hay que acordarse del lugar que ocupa cada cifra:
Algoritmo para elevar al cuadrado un número de dos cifras que empieza con 4: (4*10+u)^2 = (15+u) y (10-u)^2 Ejemplo: 47^2= (15+7) y (10-7)^2 = 22 y 09 =2209, ya que 47^2= 40x40 + 40x7x2 + 7x7 = 1600 + 560 + 49 = 2209.
Algoritmo idem, para los que empieza con 5.- (5*10+u)^2 =(25+u) y u^2; ejemplo: 53^2= (25+3) y 3^2 = 2809
Algoritmo idem, para los que empiezan con 9.- (9*10+u)^2= (80+2u)y(10-u)^2; ejemplo: 96^2=(80+2*6)y(10-6)^2= 92y16= 9216
Algoritmo idem, para los de tres cifras que empieza con 10.- (10*10+u)^2= (100+2u)y u^2; ejemplo 108^2= (100+2*8)y8^2 = 116y64= 11664
Algunos calculistas conocen de memoria las tablas de multiplicar del 1 al 100, por lo que pueden utilizar este método fácilmente para hallar el cuadrado de un número de cuatro cifras o más. Esto solo se consigue tras mucho entrenamiento, pero simplifica enormemente el cálculo como se puede observar:
El número cuyo cuadrado es conocido generalmente será uno acabado en 0. Por ejemplo, a la hora de calcular 58 × 62 nos apoyaremos en el 60, ya que ambos están a la misma distancia (2 unidades) de 60. Aquí se puede utilizar la tercera identidad, la del producto de suma por diferencia, donde a = 60 y b = 2.
Más ejemplos:
El cálculo del cuadrado de un número que acabe en 5 puede simplificarse utilizando la tercera identidad. Aquí a será el número inicial (por ejemplo, 65), y b = 5:
Por tanto, se tiene que:
Si a = 65, el resultado es el siguiente:
Más ejemplos:
El cálculo de cubos y potencias superiores mediante el uso de igualdades notables es progresivamente más difícil, y a menudo es más sencillo hallar la cuarta potencia de un número como el cuadrado de su cuadrado:
Una manera fácil de aproximar la raíz cuadrada de un número es usar la siguiente ecuación:
Cuanto más cerca esté el square conocido de lo desconocido, más precisa será la aproximación. Por ejemplo, para estimar la raíz cuadrada de 15, uno podría comenzar con el conocimiento de que el cuadrado perfecto más cercano es 16 (42).
Entonces, la raíz cuadrada estimada de 15 es 3.875. La raíz cuadrada real de 15 es 3.872983 ... Una cosa a tener en cuenta es que, sin importar cuál fue la suposición original, la respuesta estimada siempre será mayor que la respuesta real debido a la desigualdad de las medias aritmética y geométrica. Por lo tanto, se debería intentar redondear la respuesta estimada hacia abajo.
Téngase en cuenta que si n2 es el cuadrado perfecto más cercano al número de partida x y d = x - n2 es su diferencia, es más conveniente para expresar esta aproximación en forma de fracción mixta como . Así, en el ejemplo anterior, la raíz cuadrada de 15 es . Como otro ejemplo, la raíz cuadrada de 41 es mientras que el valor real es 6.4031 ...
Por definición, si r es la raíz cuadrada de x, entonces
Después se redefine la raíz
donde a es una raíz conocida (4 del ejemplo anterior) y b es la diferencia entre la raíz conocida y la respuesta que se busca.
Expandiendo la fórmula anterior
Si 'a' está cerca del número buscado, 'b' será un número lo suficientemente pequeño como para que el elemento de la ecuación sea insignificante. Por lo tanto, se puede eliminar y reorganizar la ecuación para que
y por lo tanto
que se puede reducir a
A menudo se practica la extracción de raíces de potencias enteras. La dificultad de la tarea no depende tanto del número de dígitos de la potencia entera, como de la precisión, es decir, del número de dígitos de la raíz. Además, también depende del orden de la raíz; encontrar raíces exactas, donde el orden de la raíz es un número coprimo respecto a 10 es algo más fácil, ya que los dígitos se distribuyen de manera consistente, como se muestra en la siguiente sección.
Una tarea fácil para el principiante es extraer raíces cúbicas de los cubos de números de 2 dígitos. Por ejemplo, dado 74088, determinar qué número de dos dígitos, cuando se multiplica por sí mismo una vez y luego se vuelve a multiplicar otra vez, da 74088. Quien conozca el método sabrá rápidamente que la respuesta es 42, ya que 423 = 74088.
Antes de aprender el procedimiento, se requiere que el ejecutante memorice los cubos de los números del 1 al 10:
Obsérvese que hay un patrón en el dígito más a la derecha: sumar y restar con 1 o 3. Empezando desde cero:
Hay dos pasos para extraer la raíz cúbica del cubo de un número de dos dígitos. Por ejemplo, para extraer la raíz cúbica de 29791, en primer lugar se determina el lugar de las unidades del número de dos dígitos. Como el cubo termina en 1, como se ve arriba, debe ser 1.
Téngase en cuenta que cada dígito se corresponde a sí mismo excepto 2, 3, 7 y 8, que simplemente se restan de diez para obtener el dígito correspondiente.
El segundo paso es determinar el primer dígito de la raíz cúbica de dos dígitos observando la magnitud del cubo dado. Para hacer esto, se quitan los últimos tres dígitos del cubo dado (29791 → 29) y se busca el cubo más grande que es mayor (aquí es donde se necesita conocer los cubos de los números del 1 al 10). Aquí, 29 es mayor que 1 al cubo, mayor que 2 al cubo, mayor que 3 al cubo, pero no mayor que 4 al cubo. El primer cubo más grande es mayor que 3, por lo que el primer dígito del cubo de dos dígitos debe ser 3.
Por lo tanto, la raíz cúbica de 29791 es 31.
Otro ejemplo:
Este proceso puede extenderse para encontrar raíces cúbicas de 3 dígitos de longitud mediante el módulo aritmético 11.
Este tipo de trucos se pueden utilizar en cualquier raíz donde el orden de la raíz sea coprimo con respecto a 10; por lo tanto, no funciona con la raíz cuadrada, dado que el índice de la potencia, 2, es un divisor de 10. En cambio, 3 no es divisor de 10, por lo que el método se puede aplicar a las raíces cúbicas.
Para aproximar el logaritmo común o en base 10 con una o dos cifras significativas, se requiere conocer algunas propiedades de los logaritmos y la memorización de algunos logaritmos. En particular, es necesario saber lo siguiente:
A partir de esta información, se puede calcular el logaritmo de cualquier número del 1 al 9:
El primer paso para aproximar el logaritmo común de un número es expresar dicho número en la notación científica. Por ejemplo, el número 45 en notación científica es 4,5 × 101. En general, tendremos un número de la forma a × 10b, donde a es un número entre 1 y 10. El segundo paso es utilizar lo que se llama interpolación lineal para estimar el logaritmo que queramos calcular a partir de dos ya conocidos. En el ejemplo del 45 (= 4,5 × 10), se parte de que log(4) ~ 0,60 y log(5) ~ 0,70, y como 4,5 está a medio camino entre 4 y 5, log(4,5) estará aproximadamente a medio camino entre log(4) y log(5), por tanto, será aproximadamente 0,65. En realidad, el resultado correcto siempre es ligeramente mayor de lo esperado, de hecho, log(4,5) = 0,6532125... El tercer y último paso, una vez obtenido log(a), es sumarle b para obtener el logaritmo deseado. En este caso, como log(4,5) ~ 0,65, basta añadir 1 para obtener log(45) ~ 1,65. El valor real es log(45) ~ 1,6532125...
El mismo proceso se puede emplear para calcular el logaritmo de un número entre 0 y 1. Por ejemplo, 0,045 en notación científica se expresa como 4,5 × 10-2. Hay que tener cuidado con este exponente, que es negativo. Esto dará lugar al resultado log(0,045) ~ 0,65 - 2 = -1,35.
Otro método es calcular el logaritmo del número a partir de una factorización de números cuyos logaritmos sean conocidos. En el ejemplo anterior, 45 = 9 × 5, por tanto, log(45) = log(9) + log(5) ~ 0,96 + 0,70 = 1,66.
Hay varias formas de comprobar si el resultado al que se ha llegado es el correcto:
En general, el cálculo mental consiste en modelar los números de la forma más conveniente para realizar las operaciones prescritas. Para desarrollar una mayor agilidad en el cálculo mental, es útil:
La actividad física a un nivel adecuado realizada con antelación, puede conducir a un aumento en el rendimiento de una tarea intelectual, como hacer cálculos mentales.fisiológicas, específicamente las de electroencefalografía (EEG), son útiles para evaluar la carga de trabajo mental. El uso de un EEG como medida de la carga de trabajo mental después de diferentes niveles de actividad física puede ayudar a determinar el nivel de esfuerzo físico que será más beneficioso para el rendimiento mental. El trabajo anterior realizado en la Universidad Tecnológica de Míchigan por Ranjana Mehta incluye un estudio reciente que contó con sujetos que participaron en la realización de tareas mentales y físicas. El estudio investigó los efectos de la actividad mental sobre el rendimiento físico en diferentes niveles de esfuerzo físico, y finalmente encontró una disminución en el rendimiento físico cuando las tareas mentales se completaron al mismo tiempo, con más significación estadística en el nivel más alto de carga de trabajo físico. La tarea de Brown–Peterson, un procedimiento ampliamente conocido que emplea aritmética mental utilizado principalmente en experimentos cognitivos, sugiere que la resta mental es útil para probar los efectos que el ejercicio mental puede tener sobre la persistencia de la memoria a corto plazo.
Sin embargo, se ha demostrado que durante niveles altos de actividad física se produce un efecto negativo sobre el desempeño de tareas mentales. Esto significa que demasiado trabajo físico puede disminuir la precisión y el rendimiento de los cálculos matemáticos mentales. También se ha demostrado que las medicionesEl primer Campeonato Mundial de Cálculos Mentales tuvo lugar en 1997. Este evento se repite todos los años, y consiste en una serie de tareas diferentes, como la suma de diez números de diez dígitos, la multiplicación de dos números de ocho dígitos, el cálculo de raíces cuadradas, el cálculo de los días de la semana para fechas determinadas, el cálculo de raíces cúbicas y algunas tareas diversas sorpresa.
El primer Campeonato Mundial de Cálculo Mental (Copa del Mundo de Cálculo Mental) tuvo lugar en 2004, y se celebra cada dos años. Consiste en seis tareas diferentes: suma de diez números de diez dígitos, multiplicación de dos números de ocho dígitos, cálculo de raíces cuadradas y cálculo de días de la semana para fechas determinadas, cálculo de raíces cúbicas y algunas tareas diversas sorpresa.
El Memoriad es la primera prueba que combina concursos de "cálculo mental", "memoria" y "lectura fotográfica". Los juegos y competiciones se llevan a cabo en el año de los Juegos Olímpicos, cada cuatro años. El primer Memoriad se celebró en Estambul, Turquía, en 2008. La segunda edición tuvo lugar en Antalya, Turquía, del 24 al 25 de noviembre de 2012. Participaron 89 competidores de 20 países. Se entregaron trofeos y premios en metálico para 10 categorías en total; de las cuales 5 categorías tenían que ver con cálculo mental (suma mental, multiplicación mental, raíces cuadradas mentales (no enteras), cálculo de fechas del calendario mental y Flash Anzan).
Escribe un comentario o lo que quieras sobre Cálculo mental (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)