x
1

Evaporación



La evaporación es un proceso físico que consiste en el paso lento y gradual de un estado líquido hacia un estado gaseoso, tras haber adquirido suficiente energía para vencer a la tensión superficial. A diferencia de la ebullición, la evaporación se puede producir a cualquier temperatura, siendo más rápido cuanto más elevada sea esta. No es necesario que toda la masa alcance el punto de ebullición. Cuando existe un espacio libre encima de un líquido, una parte de sus moléculas está en forma gaseosa, al equilibrarse, la cantidad de materia gaseosa se define como la presión de vapor saturante, la cual no depende del volumen, pero varía según la naturaleza del líquido y la temperatura. Si la cantidad de gas es inferior a la presión de vapor saturante, una parte de las moléculas pasan de la fase líquida a la gaseosa: eso es la evaporación. Cuando la presión de vapor iguala a la atmosférica, se produce la ebullición.[1]​ En hidrología, la evaporación es una de las variables hidrológicas importantes al momento de establecer el balance hídrico de una determinada cuenca hidrográfica o parte de esta. En este caso, se debe distinguir entre la evaporación desde superficies libres y la evaporación desde el suelo. La evaporación de agua es importante e indispensable en la vida, ya que el vapor de agua, al condensarse se transforma en nubes y vuelve en forma de lluvia, nieve, niebla o rocío.

Vista como una operación unitaria, la evaporación es utilizada para eliminar el vapor formado por ebullición de una solución o suspensión líquida.

El movimiento térmico de una molécula de líquido debe ser suficiente para vencer la tensión superficial y evaporar, esto es, su energía cinética debe exceder el trabajo de cohesión aplicado por la tensión superficial a la superficie del líquido. Por eso, la evaporación acontece más rápidamente a altas temperaturas, a altos caudales entre las fases líquida, vapor y en líquidos con bajas tensiones superficiales (esto es, con presión de vapor más elevadas).

Con solamente una proporción pequeña de moléculas localizada cerca de la superficie y moviéndose en la dirección correcta para escapar del líquido en un cierto instante, la tasa de evaporación es limitada. Además, como las moléculas de mayor energía escapan y las que quedan tienen menor energía cinética média, la temperatura del líquido se reduce. Este fenómeno también es llamado de enfriamiento evaporativo. Un ejemplo para dicho fenómeno es la transpiración (sudor).

Si la evaporación ocurre en un recipiente cerrado, las moléculas que escapan del líquido se acumulan en forma de vapor arriba del líquido. Muchas de esas moléculas regresan al estado líquido. Cuando el proceso de escape y regreso alcanza un equilibrio, el vapor es llamado saturado y no ocurren cambios adicionales en la presión de vapor o en la temperatura del líquido.

Los factores que condicionan la tasa de evaporación (generalmente se la expresa en mm/día o mm/mes) son, por un lado, los que caracterizan el estado de la atmósfera en la vecindad de la superficie evaporante y, por el otro, los factores que caracterizan la naturaleza y el estado de la superficie evaporante (agua libre, hielo, suelo desnudo, vegetación). Como una forma de correlación entre la evaporación y otros factores meteorológicos que influyen en ambos medios (agua y aire), Dalton (1802) propone la siguiente formulación:

La presión de vapor pv, y por ende la evaporación E, depende entonces tanto de la temperatura del agua como del aire.[2]

La evaporación puede medirse en forma directa desde pequeñas superficies de agua naturales o artificiales (tanques de evaporación) o a través de evaporímetros o lisímetros. Estos últimos poseen una superficie porosa embebida en agua y se ubican en condiciones tales que la medición es condicionada por las características meteorológicas de la atmósfera, tales como grado higrométrico, temperatura, insolación, viento, etc.

Las tasas de evaporación así observadas pueden generalmente ser consideradas como máximas y dan una buena aproximación del poder evaporante de la atmósfera. Aplicando a dichos valores máximos diversos coeficientes de reducción y comparando los resultados corregidos con los suministrados por las fórmulas de evaporación, se deducirán los valores más probables de las tasas de evaporación aplicables a la superficie de interés.

El más utilizado de los evaporímetros es el de tipo Piche. Está constituido por un tubo cilíndrico de vidrio de 25 cm de largo y 1.5 cm de diámetro. El tubo está graduado y cerrado en su parte superior, mientras que su abertura inferior está obturada por una hoja circular de papel filtro normalizado de 30 mm de diámetro y 0.5 mm de espesor, fijada por capilaridad y mantenida por un resorte. Llenado el aparato de agua destilada, ésta se evapora progresivamente a través de la hoja de papel filtro. La disminución del nivel del agua en el tubo permite calcular la tasa de evaporación (en mm por cada 24 h, por ejemplo). El proceso de evaporación está ligado esencialmente al déficit higrométrico del aire; sin embargo, el aparato no tiene tal vez en cuenta suficientemente la influencia de la insolación. Este aparato, en las estaciones hidrometeorológicas se instala bajo abrigo.

Los depósitos o tanques de evaporación utilizados en distintos países son de formas, dimensiones y características diferentes, pues los especialistas no están de acuerdo sobre el mejor tipo a emplear.

La razón entre la ganancia de calor de una superficie de agua por convección y la pérdida de calor debido a la evaporación, independiente de la velocidad del viento es dada por

La ecuación de Bowen fue modificada por Sartori (1987) que introdujo un parámetro que permite el cálculo de los tres casos de flujo de masa que pueden ocurrir cuando una superficie libre de agua es expuesta al aire, cuyas situaciones no pueden ser calculadas solamente con la ecuación de Bowen. Así, la ecuación de Bowen-Sartori queda:

Referencias:

Siendo que las condiciones de contorno creadas tienen una influencia significativa, los resultados varían según qué evaporímetro se ha utilizado para la determinación.

Si se tiene en cuenta que los valores de evaporación medidos en el sitio de interés, para tener validez desde el punto de vista estadístico deben tener una duración de por lo menos 15 años, se comprende la dificultad. Esto ha impulsado a numerosos investigadores a analizar fórmulas empíricas, que permitan rápidamente llegar a un resultado lo más aproximado posible.

Una de las expresiones más simples ha sido propuesta por Visentini, y se aplica para cálculos aproximados en superficies líquidas situadas en cotas bajas, donde se puede considerar que la presión atmosférica es de aproximadamente 760 mm de columna de mercurio. Las fórmulas empíricas propuestas por Visentini son:

Nótese que para una temperatura media de 10 °C, la evaporación será entre 750 mm y 1200 mm por año, es decir de aproximadamente 2 a 3 mm por día.

Considerando que en la evaporación juegan roles importantes, entre otros, la temperatura del agua, la temperatura del aire, el viento, la insolación, etc., otros investigadores han propuesto fórmulas empíricas más complejas y que, por lo tanto, son más difíciles de usar.

El agua se evapora en la superficie oceánica, sobre la superficie terrestre y también por los organismos, en el fenómeno de la transpiración en plantas y sudoración en animales. Los seres vivos, especialmente las plantas, contribuyen con un 10 % al agua que se incorpora a la atmósfera.

El agua en forma de vapor sube y se condensa formando las nubes, constituidas por agua en pequeñas gotas. Estas se enfrían acelerándose la condensación y uniéndose a otras gotitas de agua para formar gotas mayores que terminan por precipitarse a la superficie terrestre en razón a su mayor peso. La precipitación puede ser sólida (nieve o granizo) o líquida (lluvia). El vapor de agua también puede condensarse en forma de niebla o rocío.

Una parte del agua que llega a la superficie terrestre será aprovechada por los seres vivos. Tarde o temprano, toda esta agua volverá nuevamente a la atmósfera, debido principalmente a la evaporación.

Mediante la evaporación del sudor se pierde el 22 % del calor corporal, ya que el agua tiene un elevado calor específico, y para evaporarse necesita absorber calor, y lo toma del cuerpo, el cual se enfría. Una corriente de aire que reemplace el aire húmedo por el aire seco, aumenta la evaporación.

Para que se evapore 1 g de sudor de la superficie de la piel se requieren aproximadamente 0,58 kcal las cuales se obtienen del tejido cutáneo, con lo que la piel se enfría y consecuentemente el organismo.

La evaporación de agua en el organismo se produce por los siguientes mecanismos:

Evaporación insensible o perspiración: se realiza en todo momento y a través de los poros de la piel, siempre que la humedad del aire sea inferior al 100 %. También se pierde agua a través de las vías respiratorias.

Evaporación superficial: formación del sudor por parte de las glándulas sudoríparas, que están distribuidas por todo el cuerpo, pero especialmente en la frente, palmas de manos, pies, axilas y pubis.

Vista como una operación unitaria, la evaporación es utilizada para eliminar el vapor formado por ebullición de una solución o suspensión líquida para así obtener una solución concentrada. Se puede hacer por calentamiento o a presión reducida.[3]​ En la gran mayoría de los casos, la evaporación vista como operación unitaria se refiere a la eliminación de agua de una solución acuosa.[4]

La evaporación en vacío es usada en la industria alimentaria para la conservación de alimentos, y en otras industrias, para el recubrimiento de diversos materiales.




Escribe un comentario o lo que quieras sobre Evaporación (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!