x
1

Isótopos radiactivos



Un radioisótopo (radionucleido, radionúclido, nucleido radioactivo o isótopo radiactivo) es un átomo que tiene un exceso de energía nuclear , lo que lo hace inestable. Este exceso de energía puede ser utilizado de tres maneras: emitida desde el núcleo como radiación gamma; transferida a uno de sus electrones para liberarlo como un electrón de conversión interna; o utilizada para crear y emitir una nueva partícula (partícula alfa o partícula beta) desde el núcleo. Durante esos procesos, se dice que el radioisótopo sufre una desintegración radiactiva.[1]​ Estas emisiones se consideran radiación ionizante porque son lo suficientemente potentes como para liberar un electrón de otro átomo. La desintegración radioactiva puede producir un isótopo estable o a veces produce un nuevo radioisótopo inestable que puede sufrir una mayor desintegración. La desintegración radiactiva es un proceso aleatorio a nivel de átomos individuales: es imposible predecir cuándo se desintegrará un átomo en particular.[2][3][4][5]​ Sin embargo, para una colección de átomos de un solo elemento, la tasa de desintegración, y por lo tanto la vida media. (t1/2) para esa colección puede calcularse a partir de sus constantes de decaimiento medidas. El rango de vida media de los átomos radiactivos no tiene límites conocidos y abarca un rango de tiempo de más de 55 órdenes de magnitud.

Los radioisótopos se producen naturalmente o artificialmente en reactores nucleares, ciclotrones, aceleradores de partículas o generadores de radioisótopos. Hay alrededor de 730 radioisótopos con vidas medias de más de 60 minutos (ver lista de radioisótopos). Treinta y dos de ellos son radioisótopos primigenios que fueron creados antes de que se formara la tierra. Al menos otros 60 radioisótopos son detectables en la naturaleza, ya sea como hijos de radioisótopos primigenios o como radioisótopos producidos a través de la producción natural en la Tierra por la radiación cósmica. Más de 2400 radioisótopos tienen una vida media inferior a 60 minutos. La mayoría de ellos se producen solo artificialmente y tienen una vida media muy corta. Para la comparación, hay cerca de 252 isótopos estables. (En teoría, solo 146 de ellos son estables, y se cree que los otros 106 se desintegran (desintegración alfa o desintegración beta o doble desintegración beta o captura electrónica o captura de doble electrón)).

Todos los elementos químicos pueden existir como radioisótopos. Incluso el elemento más ligero, hidrógeno, tiene un conocido radioisótopo, tritio. Los elementos más pesados que el plomo, y los elementos tecnecio y prometio, existen solo como radioisótopos. (En teoría, los elementos más pesados que disprosio existen solo como radioisótopos, pero la vida media de algunos de estos elementos (por ejemplo, oro y platino) es demasiado larga para encontrarlos).

La exposición no planificada a los radioisótopos tiene generalmente un efecto nocivo sobre los organismos vivos, incluidos los seres humanos, aunque los bajos niveles de exposición se producen de forma natural y sin daños. El grado de daño dependerá de la naturaleza y extensión de la radiación producida, de la cantidad y naturaleza de la exposición (contacto cercano, inhalación o ingestión) y de las propiedades bioquímicas del elemento, siendo la consecuencia más habitual el aumento del riesgo de cáncer. Sin embargo, los radioisótopos con propiedades adecuadas se utilizan en medicina nuclear tanto para el diagnóstico como para el tratamiento. Un marcador de imágenes hecho con radioisótopos se llama marcador radioactivo. Un medicamento farmacéutico hecho con radioisótopos se llama radiofármaco.

En la Tierra, los radioisótopos naturales se dividen en tres categorías: radioisótopos primigenios, radioisótopos secundarios y radioisótopos cosmogénicos.

Muchos de estos radioisótopos existen solo en cantidades mínimas en la naturaleza, incluyendo todos los isótopos cosmogenicos. Los radioisótopos secundarios se producirán en proporción a su vida media, por lo que los de corta duración serán muy raros. Así, el polonio puede encontrarse en los minerales de uranio a unos 0,1 mg por tonelada métrica. (1 parte en 1010).[7][8]​ En la naturaleza pueden ocurrir más radioisótopos en cantidades prácticamente indetectables como resultado de eventos raros como la fisión espontánea o interacciones de rayos cósmicos poco comunes.

Los radioisótopos se producen como resultado inevitable de la fisión nuclear y explosiones termonucleares. El proceso de fisión nuclear crea una amplia gama de productos de la fisión nuclear, la mayoría de los cuales son radioisótopos. Se pueden crear más radioisótopos a partir de la irradiación del combustible nuclear (creando un rango de actínidos) y de las estructuras circundantes, produciendo productos de activación. Esta compleja mezcla de radioisótopos con diferentes químicas y radiactividad hace que el manejo de los desechos nucleares y el tratamiento de la lluvia radiactiva sea particularmente problemático.

Los radioisótopos sintéticos se sintetizan deliberadamente utilizando reactores nucleares, aceleradores de partículas o generadores de radioisótopos:

Los radioisótopos se utilizan de dos maneras principales: bien solo por su radiación (irradiación, baterías nucleares) o bien por la combinación de sus propiedades químicas y su radiación (trazadores, biofármacos).

En la siguiente tabla se enumeran las propiedades de los radioisótopos seleccionados, ilustrando la gama de propiedades y usos.

Leyenda: Z = número atómico; N = número neutrónico; MD = modo de desintegración; ED = energía de desintegración; CE = captura electrónica; FE = fision espontánea; IC: conversión interna

Los radioisótopos están presentes en muchos hogares, ya que se utilizan dentro de los detectores de humo domésticos más comunes. El radioisótopo utilizado es americio-241, que se crea bombardeando plutonio con neutrones en un reactor nuclear. Se descompone emitiendo partículas alfa y radiación gamma para convertirse en neptunio-237. Los detectores de humo utilizan una cantidad muy pequeña de 241Am (aproximadamente 0,29 microgramos por detector de humo) en forma de dióxido de americio. 241Am se utiliza para ello porque emite partículas alfa que ionizan el aire en la cámara de ionización del detector. Se aplica una pequeña tensión eléctrica al aire ionizado que da lugar a una pequeña corriente eléctrica. En presencia de humo se neutralizan algunos de los iones, disminuyendo así la corriente, lo que activa la alarma del detector.[13][14]

Los radioisótopos que se introducen en el medio ambiente pueden causar efectos nocivos como la contaminación radiactiva. También pueden causar daño si se usan excesivamente durante el tratamiento o si se exponen de otras maneras a seres vivos, por envenenamiento por radiación. El daño potencial a la salud por la exposición a los radioisótopos depende de una serie de factores, y «puede dañar las funciones de los tejidos y órganos sanos. La exposición a la radiación puede producir efectos que van desde el enrojecimiento de la piel y la pérdida de cabello, hasta quemaduras por radiación y síndrome de irradiación aguda. La exposición prolongada puede llevar a que las células se dañen, y a su vez, a que se desarrolle el cáncer. Los signos de células cancerosas podrían no aparecer hasta años, o incluso décadas, después de la exposición». [15]

A continuación se presenta una tabla resumen del total lista de isótopos con vidas medias mayores a una hora. Noventa de estos 989 isótopos son teóricamente estables, excepto la desintegración de protones (que nunca ha sido observada). Alrededor de 252 isótopos nunca han sido observados en desintegración y son considerados clásicamente estables.

Los radioisótopos tabulados restantes tienen una vida media superior a 1 hora, y están bien caracterizados (ver lista de isótopos para una tabulación completa). Incluyen 30 isótopos con vidas media medidas más largas que la edad estimada del universo (13.8 billones de años[16]​), y otros 4 isótopos con vida media lo suficientemente larga (> 100 millones de años) como para que sean isótopos primigenios radioactivos, y puedan ser detectados en la Tierra, habiendo sobrevivido de su presencia en el polvo interestelar desde antes de la formación del sistema solar, hace unos 4,6 mil millones de años. Otros más de 60 isótopos de vida corta pueden ser detectados naturalmente como hijas de isótopos de vida más larga o productos de rayos cósmicos. El resto de los isótopos conocidos se conocen únicamente por transmutación artificial.

Los números no son exactos, y pueden cambiar ligeramente en el futuro, ya que se observa que los «isótopos estables» son radioactivos con vidas medias muy largas.

Esta es una tabla resumen [nota 1]​ para los 989 isótopos con vida media superior a una hora (incluyendo los que son estables), dados en lista de isótopos.

Esta lista abarca los isótopos comunes, la mayoría de los cuales están disponibles en cantidades muy pequeñas para el público en general en la mayoría de los países. Otros que no son de acceso público se comercializan comercialmente en los campos industrial, médico y científico y están sujetos a la regulación gubernamental.



Escribe un comentario o lo que quieras sobre Isótopos radiactivos (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!