x
1

Poliedro uniforme



Un poliedro uniforme es una figura tridimensional que tiene polígonos regulares como caras y es isogonal (es decir, presenta una isometría que permite hacer corresponder el conjunto de sus vértices entre sí mediante relaciones de simetría). De ello se deduce que todos sus vértices son congruentes.[1]

Los poliedros uniformes pueden ser regulares (si también son transitivos con respecto a caras y aristas), cuasirregulares (si son transitivos con respecto a sus aristas pero no con respecto a sus caras) o semirregulares (si no son transitivos de aristas ni de caras). No es necesario que la configuración de caras y de vértices sea convexa, por lo que muchos de los poliedros uniformes también son poliedros estrellados.

Hay dos clases infinitas de poliedros uniformes, junto con otros 75 poliedros:

Por tanto, 5 + 13 + 4 + 53 = 75.

También hay muchos poliedros uniformes degenerados con pares de bordes que coinciden, incluido uno encontrado por John Skilling denominado gran dirrombidodecaedro birromo (figura de Skilling).

Los poliedros conjugados de los poliedros uniformes son figuras isoedrales (es decir, isoédricas), presentan figuras de vértice regulares, y generalmente se clasifican en paralelo con su poliedro dual (uniforme). El dual de un poliedro regular es regular, mientras que el dual de un sólido de Arquímedes es un sólido de Catalan.

El concepto de poliedro uniforme es un caso especial del concepto de politopo uniforme, que también se aplica a las formas en el espacio de dimensiones superiores e inferiores.

Coxeter, Longuet-Higgins y Miller (1954) definen los poliedros uniformes como poliedros con caras regulares y transitividad entre sus vértices (es decir, con propiedades de isoedría). A su vez, definen un poliedro como un conjunto finito de polígonos, de modo que cada lado de un polígono es un lado de otro polígono, de modo que ningún subconjunto propio no vacío de los polígonos tiene la misma propiedad. Por polígono se refieren implícitamente a un polígono en un espacio euclídeo tridimensional; se permite que no sean convexos y que sus aristas se crucen entre sí.[3]

Hay algunas generalizaciones del concepto de poliedro uniforme. Si se descarta el supuesto de conectividad, se obtienen sólidos compuestos uniformes, que se pueden considerar como la unión de poliedros (como por ejemplo, el compuesto de 5 cubos). Si se deja de lado la condición de que la configuración del poliedro no sea degenerada, se obtienen los llamados poliedros uniformes degenerados, que requieren una definición más general del concepto de poliedro. Grünbaum (1994) dio una definición bastante complicada de poliedro, mientras que McMullen y Schulte (2002) dio una definición más simple y general: en su terminología, un poliedro es un politopo abstracto bidimensional con una realización tridimensional no degenerada. Aquí, politopo abstracto es el conjunto de sus caras que satisfacen varias condiciones, una realización es una función desde sus vértices a algún espacio, y la realización se llama no degenerada si dos caras distintas del politopo abstracto tienen realizaciones distintas.

Algunas de las formas en que pueden dar lugar a poliedros degenerados son las siguientes:

Las 57 formas no prismáticas no convexas, con la excepción del gran dirhombicosidodecaedro, son compiladas por construcciones de Wythoff dentro de los triángulos de Schwarz.

Los poliedros uniformes convexos se pueden nombrar mediante operaciones de construcción de Wythoff sobre una forma regular. Para más detalle, más adelante se dan los poliedros uniformes convexos por su construcción de Wythoff dentro de cada grupo de simetría.

Dentro de la construcción de Wythoff, hay repeticiones creadas por formas de simetría más baja. El cubo es un poliedro regular y un prisma cuadrado. El octaedro es un poliedro regular y un antiprisma triangular. El octaedro también es un tetraedro rectificado. Muchos poliedros se repiten a partir de diferentes fuentes de construcción y están coloreados de manera diferente.

La construcción de Wythoff se aplica igualmente a poliedros uniformes y teselados uniformes en la superficie de una esfera, por lo que se dan imágenes de ambos. Los mosaicos esféricos incluyen el conjunto del hosoedro y del diedro, que son poliedros degenerados.

Estos grupos de simetría se forman a partir de los grupos de puntos en tres dimensiones reflexivos, cada uno representado por un triángulo fundamental (p q r), donde p > 1, q > 1, r > 1 y 1/p + 1/q + 1/r < 1.

Las formas no reflexivas restantes se construyen mediante operaciones de alternación aplicadas a los poliedros con un número par de lados.

Junto con los prismas y su grupo diedral, el proceso de construcción esférico de Wythoff agrega dos clases regulares que se degeneran como poliedros: el diedro y el hosoedro, el primero con solo dos caras, y el segundo con solo dos vértices. El truncamiento del hosoedro regular crea los prismas.

Debajo de los poliedros uniformes convexos se indexan de 1 a 18 las formas no prismáticas, que se presentan en las tablas por forma de simetría.

Para el conjunto infinito de formas prismáticas, están indexadas en cuatro familias:

Muestra de simetrías diédricas:

(La esfera no se corta, solo se corta el teselado). (En una esfera, una arista es el arco de un círculo máximo, el camino más corto, entre sus dos vértices. Por lo tanto, un digóno cuyos vértices no están opuestos polarmente es plano: parece una arista)

La simetría tetraédrica de la esfera genera 5 poliedros uniformes y una sexta forma mediante una operación de suavizado (poliedro romo).

La simetría tetraédrica está representada por un triángulo fundamental con un vértice con dos simetrías de reflexión y dos vértices con tres simetrías de reflexión, representado por el símbolo (3 3 2). También puede estar representado por el grupo de Coxeter A2 o [3,3], así como por el diagrama de Coxeter-Dynkin: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png.

Hay 24 triángulos, visibles en las caras del tetraquishexaedro y en los triángulos de la esfera coloreados alternativamente:

La simetría octaédrica de la esfera genera 7 poliedros uniformes y 7 más por alternancia. Seis de estas formas se repiten de la tabla de simetría tetraédrica anterior.

La simetría octaédrica está representada por un triángulo fundamental (4 3 2) contando las reflexiones en cada vértice. También se puede representar con el grupo de Coxeter B2 o [4,3], así como con el diagrama de Coxeter-Dynkin: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png.

Hay 48 triángulos, visibles en las caras del hexaquisoctaedro y en los triángulos de colores alternados en una esfera:

La simetría icosaédrica de la esfera genera 7 poliedros uniformes y 1 más por alternancia. Solo uno se repite de la tabla de simetría tetraédrica y octaédrica anterior.

La simetría icosaédrica está representada por un triángulo fundamental (5 3 2) contando las reflexiones en cada vértice. También se puede representar mediante el grupo de Coxeter G2 o [5,3], así como por un diagrama de Coxeter-Dynkin: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png.

Hay 120 triángulos, visibles en las caras del hexaquisicosaedro y en los triángulos de colores alternados en una esfera:

El grupo diedral de la esfera genera dos conjuntos infinitos de poliedros uniformes (prismas y antiprismas,) y dos conjuntos infinitos más de poliedros degenerados, el hosoedro y el diedro que existen como teselas en la esfera.

La simetría diédrica o diedral está representada por un triángulo fundamental (p 2 2) contando las reflexiones en cada vértice. También puede estar representado por el grupo de Coxeter I2 (p) o [n, 2], así como por un diagrama de Coxeter-Dynkin prismático: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.png.

A continuación se muestran las primeras cinco simetrías diédricas: D2 ... D6. La simetría diedral Dp tiene orden 4n, representa las caras de una bipirámide, y en la esfera como una línea del ecuador y n líneas de longitud igualmente espaciadas.

Hay 8 triángulos fundamentales, visibles en las caras del octaedro y en los triángulos de colores alternados en una esfera:

Hay 12 triángulos fundamentales, visibles en las caras de la bipirámide hexagonal y como triángulos de colores alternados en una esfera:

Hay 16 triángulos fundamentales, visibles en las caras de la bipirámide octogonal y en los triángulos de colores alternados en una esfera:

Hay 20 triángulos fundamentales, visibles en las caras de una bipirámide decagonal y en los triángulos de colores alternados en una esfera:

Hay 24 triángulos fundamentales, visibles en las caras de una bipirámide dodecagonal y en los triángulos de colores alternados de una esfera.



Escribe un comentario o lo que quieras sobre Poliedro uniforme (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!