x
1

Radiaciones ionizantes



Las radiaciones ionizantes son aquellas radiaciones con energía suficiente para ionizar la materia, extrayendo los electrones de sus estados ligados al átomo.

Existen otros procesos de emisión de energía, como por ejemplo el debido a una lámpara, un calentador (llamado radiador precisamente por radiar calor o radiación infrarroja), o la emisión de radio ondas en radiodifusión, que reciben el nombre genérico de radiaciones.

Las radiaciones ionizantes pueden provenir de sustancias radioactivas, que emiten dichas radiaciones de forma espontánea, o de generadores artificiales, tales como los generadores de rayos X y los aceleradores de partículas.

Las procedentes de fuentes de radiaciones ionizantes que se encuentran en la corteza terráquea de forma natural, pueden clasificarse como compuestas por partículas alfa, beta, rayos gamma o rayos X. También se pueden producir fotones ionizantes cuando una partícula cargada que posee una energía cinética dada, es acelerada (ya sea de forma positiva o negativa), produciendo radiación de frenado, también llamada bremsstrahlung, o de radiación sincrotrón por ejemplo (hacer incidir electrones acelerados por una diferencia de potencial sobre un medio denso como Wolframio, plomo o hierro es el mecanismo habitual para producir rayos X). Otras radiaciones ionizantes naturales pueden ser los neutrones o los muones.

Las radiaciones ionizantes interaccionan con la materia viva, produciendo diversos efectos. Del estudio de esta interacción y de sus efectos se encarga la radiobiología.

Se utilizan, desde su descubrimiento por Wilhelm Conrad Roentgen en 1895, en la medicina y en la industria. La aplicación más conocida son los aparatos de rayos X, o el uso de fuentes de radiación en el ámbito médico, tanto en diagnóstico (gammagrafía) como en el tratamiento (radioterapia en oncología, por ejemplo) mediante el uso de fuentes (p.ej. cobaltoterapia) o aceleradores de partículas.

Los restos de las explosiones de bombas en la Segunda Guerra Mundial, en las pruebas atómicas llevadas a cabo en la atmósfera por las potencias nucleares durante el inicio de la Guerra Fría, o las debidas al accidente de Chernobyl dan lugar a una presencia ubicua de radioisótopos artificiales procedentes de la fisión (principalmente 137Cs). Los isótopos de semiperiodo más largo serán detectables durante decenas de años en toda la superficie terrestre.

Como ya se ha dicho, los seres vivos están expuestos a niveles bajos de radiación ionizante procedente del sol, las rocas, el suelo, fuentes naturales del propio organismo, residuos radiactivos de pruebas nucleares en el pasado, de ciertos productos de consumo y de materiales radiactivos liberados desde hospitales y desde plantas asociadas a la energía nuclear y a las de carbón.

Los trabajadores expuestos a mayor cantidad de radiaciones son los astronautas (debido a la radiación cósmica), el personal médico o de rayos X, los investigadores, los que trabajan en una instalación radiactiva o nuclear. Además se recibe una exposición adicional con cada examen de rayos X y de medicina nuclear, y la cantidad depende del tipo y del número de exploraciones.

No se ha demostrado que la exposición a bajos niveles de radiación ionizante del ambiente afecte la salud de seres humanos. De hecho existen estudios que afirman que podrían ser beneficiosas (la hipótesis de la hormesis).[2][3]
Sin embargo, los organismos dedicados a la protección radiológica oficialmente utilizan la hipótesis conservadora de que hasta en dosis moderadas, e incluso muy bajas,[4]​ las radiaciones ionizantes aumentan la probabilidad de contraer cáncer, y que esta probabilidad aumenta con la dosis recibida (Modelo lineal sin umbral).[5][6]​ A los efectos producidos a estas dosis bajas se les suele llamar efectos probabilistas, estadísticos o estocásticos.

La exposición a altas dosis de radiación ionizante puede causar quemaduras de la piel, caída del cabello, náuseas, enfermedades y la muerte. Los efectos dependerán de la cantidad de radiación ionizante recibida y de la duración de la irradiación, y de factores personales tales como el sexo, edad a la que se expuso, y del estado de salud y nutrición. Aumentar la dosis produce efectos más graves.

Está demostrado que una dosis de 3 a 4 Sv produce la muerte en el 50 % de los casos. A los efectos producidos a altas dosis se les denomina deterministas o no estocásticos en contraposición a los estocásticos.

Las radiaciones ionizantes tienen aplicaciones muy importantes en ciencias, industrias y medicina. En la industria, las radiaciones ionizantes pueden ser útiles para la producción de energía, para la esterilización de alimentos, para conocer la composición interna de diversos materiales y para detectar errores de fabricación y ensamblaje. En el campo de la medicina, las radiaciones ionizantes también cuentan con numerosas aplicaciones beneficiosas para el ser humano. Con ellas se pueden realizar una gran variedad de estudios diagnósticos (medicina nuclear y radiología) y tratamientos (medicina nuclear y radioterapia).

Las partículas cargadas, como los electrones, los positrones, muones, protones, iones u otras, interactúan directamente con la corteza electrónica de los átomos, debido a la fuerza electromagnética.

Los rayos gamma interactúan con los átomos de la materia con tres mecanismos distintos:

Los neutrones interactúan con los núcleos de la materia mediante los siguientes efectos:

Los seres humanos no poseen ningún sentido que perciba las radiaciones ionizantes. Existen diversos tipos de instrumentos que pueden captar y medir la cantidad de radiación ionizante que absorbe la materia. (Ver como ejemplo los contadores Geiger, detectores de ionización gaseosa, centelleadores o ciertos semiconductores)

Existen varias unidades de medida de la radiación ionizante, unas tradicionales y otras del Sistema Internacional de Unidades (SI).



Escribe un comentario o lo que quieras sobre Radiaciones ionizantes (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!