x
1

Cubo (aritmética)



En aritmética y álgebra, el cubo de un número n es la tercera potencia —el resultado de multiplicar por sí mismo dos veces:[1]

En geometría, es la ecuación para obtener el volumen de un cubo (hexaedro regular) de arista a:

A diferencia del cuadrado de un número, no existe el número cubo más pequeño, debido a que se incluyen los números negativos. Por ejemplo, (−4) × (−4) × (−4) = −64. Para cualquier n, (−n)3 = −(n3). Sin embargo, es posible en el caso de los números naturales; el cubo de 1 es la tercera potencia más pequeña en .

A diferencia de los cuadrados perfectos, los cubos perfectos no tienen una pequeña cantidad de posibilidades excepto para los dos últimos dígitos, excepto para los cubos divisibles por 5, donde únicamente 25 y 75 pueden ser los dos últimos dígitos; cualquier par de dígitos con los últimos dígitos impares puede ser un cubo perfecto. Con los cubos pares, hay una considerable restricción, solo para 00, i2, p4, i6 y p8 puede que los dos últimos dígitos de un cubo perfecto (donde i significa cualquier dígito impar y p para dígitos pares). Algunos números cúbicos son también números cuadrados, por ejemplo 64 es un cuadrado (8 × 8) y al mismo tiempo un cubo (4 × 4 × 4); esto ocurre si y solo si es una sexta potencia perfecta. Cabe esa posibilidad si el expontente k es múltiplo de 6, para la duodécima, décima octava potencia, etc.

Sin embargo, es fácil ver que la mayoría de los números no son cubos perfectos a causa de que todos los cubos perfectos deben tener una raíz digital 1, 8 o 9. De esta forma, la raíz digital de cualquier número queda determinada por el resto del número cuando es dividido entre 3:

Cada entero positivo puede ser escrito como la suma de nueve cubos o incluso menos, véase problema de Waring. Este límite superior de nueve cubos no puede ser reducido ya que, por ejemplo, 23 no puede ser escrito como la suma de menos de nueve cubos:

El número m es un cubo perfecto si y solo si pueden ordenarse m puntos en un cubo, por ejemplo 3 × 3 × 3 = 27. La suma de los primeros n cubos perfectos es un n-ésimo número triangular al cuadrado:

Por ejemplo, la suma de los primeros cinco números cubos perfectos, 13 + 23 + 33 + 43 + 53, es igual a la suma de los cinco primeros números triangulares 152 que es 225.

La función inversa a encontrar un número cuyo cubo es n se denomina extracción de la raíz cúbica de n. La operación es similar a encontrar la arista de un cubo de volumen conocido. También se dice que n elevado un tercio.

En vez de hacer tres depósitos cúbicos de aristas 17, 14 y 7 m respectivamente, si se reemplaza por un depósito cúbico de arista 20 m, se ahorra en costo de material y se usa en menos cantidad. Pero la misma capacidad.




Escribe un comentario o lo que quieras sobre Cubo (aritmética) (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!