x
1

Desigualdad matemática



En matemáticas, una desigualdad es una relación de orden que se da entre dos valores cuando estos son distintos (en caso de ser iguales, lo que se tiene es una igualdad).

Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o los reales, entonces pueden ser comparados.

Estas relaciones se conocen como desigualdades estrictas, puesto que a no puede ser igual a b; también puede leerse como "estrictamente menor que" o "estrictamente mayor que"

estos tipos de desigualdades reciben el nombre de desigualdades amplias (o no estrictas).

Generalmente se tienden a confundir los operadores según la posición de los elementos que se están comparando; didácticamente se enseña que la abertura está del lado del elemento mayor. Otra forma de recordar el significado, es recordando que el signo señala/apunta al elemento menor.

Las desigualdades están gobernadas por las siguientes propiedades. Notar que, para las propiedades transitividad, adición, sustracción, multiplicación y división, la propiedad también se mantiene si los símbolos de desigualdad estricta (< y >) son reemplazados por sus correspondientes símbolos de desigualdad no estricta (≤ y ≥).

Al aplicar una función monótona creciente, a ambos lados, la desigualdad se mantiene. Si se aplica una función monótona decreciente, la desigualdad se invierte.

al aplicar la función exponencial a ambos miembros de la desigualdad, esta se mantiene.

Se puede definir el valor absoluto por medio de desigualdades:

Si (F, +, ×) es un cuerpo y ≤ es un orden total sobre F, entonces (F, +, ×, ≤) es un cuerpo ordenado si y solo si:

Los cuerpos (Q, +, ×, ≤) y (R, +, ×, ≤) son ejemplos comunes de cuerpo ordenado, pero ≤ no puede definirse en los complejos para hacer de (C, +, ×, ≤) un cuerpo ordenado.

Las desigualdades en sentido amplio ≤ y ≥ sobre los números reales son relaciones de orden total, mientras que las desigualdades estrictas < y > sobre los números reales son relaciones de orden estricto.

La notación a < b < c establece que a < b (a menor que b) y que b < c (b menor que c) y aplicando la propiedad transitiva anteriormente citada, puede deducirse que a < c (a menor que c). Obviamente, aplicando las leyes anteriores, puede sumarse o restarse el mismo número real a los tres términos, así como multiplicarlos o dividirlos todos por el mismo número (distinto de cero) invirtiendo las inecuaciones según su signo. Así, a < b + e < c es equivalente a a - e < b < c - e.

Esta notación se puede extender a cualquier número de términos: por ejemplo, a1 ≤ a2 ≤ ... ≤ an establece que ai ≤ ai+1 para i = 1, 2, ..., n−1. Según la propiedad transitiva, esta condición es equivalente a ai ≤ aj para cualesquiera 1 ≤ i ≤ j ≤ n.

Ocasionalmente, la notación encadenada se usa con inecuaciones en diferentes direcciones. En ese caso el significado es la conjunción lógica de las desigualdades entre los términos adyacentes. Por ejemplo:

significa que a < b, b = c, y c ≤ d (y por transitividad: a < d). Esta notación es utilizada en algunos lenguajes de programación tales como Python.

Las distintas medias pueden relacionarse utilizando desigualdades. Por ejemplo, para números positivos a1, a2, …, an, si

entonces: .



Escribe un comentario o lo que quieras sobre Desigualdad matemática (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!