En matemáticas, un espacio prehilbertiano o espacio prehilbert es un espacio vectorial provisto de un producto escalar. Más concretamente, es un par , donde es un espacio vectorial sobre un cuerpo y es un producto escalar en .
El espacio prehilbertiano es un tipo de espacio métrico con la métrica inducida por la norma que como veremos puede definirse a partir del producto escalar.
Un espacio prehilbertiano que además sea un espacio completo, se dirá que es un espacio de Hilbert o hilbertiano. Si es de dimensión finita se dirá que es espacio euclídeo.
Una condición necesaria para que un espacio prehilbertiano sea un espacio de Hilbert es que el cuerpo base sea o , así ningún espacio prehilbertiano sobre puede ser un espacio de Hilbert.
Formalmente, un espacio prehilbertiano es un espacio vectorial V sobre un cuerpo K (Puede ser o ), el cual posee una operación definida con la siguiente función:
llamada producto escalar, que satisface ciertos axiomas:
En los espacios con producto escalar se define una norma
La norma está bien definida, por ser siempre el producto escalar de un vector por sí mismo un número real mayor o igual que cero. En espacios euclídeos define la "longitud" del vector x. Además se trata de una norma por cumplir las condiciones:
Usando los axiomas ya mencionados podemos demostrar los siguientes teoremas:
Escribe un comentario o lo que quieras sobre Espacio de producto interior (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)