En el estudio de las funciones reales de variable real, si consideramos el punto , nos interesa el comportamiento de cuando se toma el opuesto . Puede suceder que obtenga el mismo resultado que , en cuyo caso se trata de una función par. También puede suceder que para , se obtenga de modo que el resultado no es el mismo que el de , en cuyo caso se trata de una función impar. En el aspecto geométrico la no variación de al cambiar a , revela simetría de la gráfica de respecto al eje Y. La variación de a al reemplazar por , indica simetría respecto al origen de coordenadas. Entre las funciones reales hay funciones pares, impares y que no asumen ninguno de los casos mencionados. Por ejemplo , no es par ni impar, ya que no podemos definir esta función para números reales negativos.
Las funciones pares e impares son usadas en muchas áreas del análisis matemático, especialmente en la teoría de las series de potencias y series de Fourier.
Una función par es una función que satisface la relación y si y -x están en el dominio de la función.
Desde un punto de vista geométrico, la gráfica de una función par es simétrica con respecto al eje y, lo que quiere decir que su gráfica no se altera luego de una reflexión sobre el eje y.
Ejemplos de funciones pares son la función valor absoluto f(X)= |x|, las funciones elementales f(x)=x2, f(X)= x4, f(X)= cosx; una función hiperbólica f(X)= cosh(x), todas definidas en ℝ, la ampliación f(x)=ln|x| de ln, con dominio ℝ-{0}; la función f(x)= 1/|x|, reflexión parcial, con eje Ox, de f(x) =1/x en su subdominio <-∞; o>.
El término función par suele referirse a una clase especial de funciones de variable real: una función es una función par si para se cumple la siguiente relación:
La definición anterior puede generalizarse a funciones sobre dominios más generales. Si A es un conjunto con cierta estructura algebraica en la que existan inversos aditivos (por ejemplo, los números complejos C), una función par sería toda función:
que cumpla:
La definición de función par presupone que si entonces necesariamente , de no ser así no se podría definir .
La función:
es par ya que para cualquier valor de x se cumple:
Comprobando que la función es par.
Si x=2, entonces:
Una función impar es cualquier función que satisface la relación:
para todo en el dominio de .
Desde un punto de vista geométrico, una función impar posee una simetría rotacional con respecto al origen de coordenadas, lo que quiere decir que su gráfica no se altera luego de una rotación de 180 grados alrededor del origen.
Ejemplos de funciones impares son x, x3, seno(x), sinh(x), y la erf (x).
La función:
J es impar, ya que:
en este caso la función no está definida en el punto .
Si vemos la función:
Podemos ver que se cumple:
Y esta función si pasa por el punto (0,0).
La paridad de una función no implica que sea diferenciable o continua.
Escribe un comentario o lo que quieras sobre Función impar (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)