x
1

Dominio de integridad



Un dominio de integridad, dominio íntegro, anillo íntegro, dominio entero[1]​ es un anillo conmutativo que carece de elementos divisores de cero por la izquierda y de elementos divisores de cero por la derecha (con lo cual carece de elementos divisores de cero).

Un subanillo de un dominio de integridad es también un dominio de integridad.

En la literatura "antigua" se exige (a veces se sobreentiende) que el anillo es conmutativo y unitario, porque se ignoraba la existencia de anillos no conmutativos que no tuvieran divisores de cero (por la izquierda o por la derecha). Los dominios de Maltsev[2]​ son un tipo de anillos no conmutativos que carecen de elementos divisores de cero (ni por la izquierda ni por la derecha). Respecto a dominios íntegros no unitarios, el conjunto es un subanillo no unitario del dominio de integridad . En este artículo, un dominio íntegro será siempre un anillo conmutativo y unitario (ya que así se entiende en la mayor parte de la literatura, señalándose los casos en que no se adopta estos criterios).

Todo cuerpo es dominio de integridad conmutativo y unitario. Más en general, todo anillo de división es dominio de integridad unitario.

Una de las propiedades más interesantes de un dominio de integridad es la de que existe «el menor cuerpo que lo contiene». De forma más precisa:

Sea un dominio íntegro (conmutativo y unitario). Sea = . Establecemos en el conjunto la relación definida por cuando y sólo cuando . Es sencillo comprobar que es una relación de equivalencia. Denotaremos por al conjunto cociente , y por a la clase de equivalencia del par ordenado .

Se define la suma de la siguiente manera:

cualesquiera que sean . Es sencillo comprobar que es operación interna, asociativa, conmutativa, que tiene elemento neutro y que todo elemento tiene por elemento simétrico (elemento opuesto) a . Así, es un grupo abeliano.

Se define la multiplicación de la siguiente manera:

cualesquiera que sean . Es sencillo comprobar que es operación interna, asociativa, conmutativa, que tiene elemento neutro y que todo elemento tiene por elemento simétrico (elemento inverso) a . Así, es un grupo abeliano.

Se demuestra sin dificultad que es distributiva respecto de +. Esto hace que quede dotado de estructura de cuerpo.

Quizás el aspecto más interesante que ofrecen los dominios íntegros es el de poder genralizar a ellos muchas de las propiedades sobre divisibilidad que conocemos en el anillo de los números enteros .

En adelante, representarán elementos en el dominio íntegro (i.e. ).

Se dice que y son asociados si existe un de manera que . Se denota por .

Se denota por el conjunto formado por todos los divisores de la identidad, 1, llamados unidades del anillo.

Se dice que divide a si existe un de manera que . Se denota por . Si y son asociados, entonces divide a y divide a .

Se dice que un elemento de un dominio íntegro es un átomo o elemento irreducible (a veces se dice simplemente que es un irreducible) de si , , y si entonces o bien es o bien .

Se dice que un elemento de un dominio es un elemento primo (o simplemente primo) si el ideal generado por es ideal primo de .

Lo cierto es que la notación es un poco confusa cuando nos referimos a los números enteros. En ese caso, el concepto de número primo corresponde con el de elemento irreducible, y tendríamos que el 0 y el 1 serían elementos primos de , aunque no serían números primos.

Si es elemento primo del dominio íntegro , y entonces es irreducible.

Sean .

Es de destacar que no se dice el máximo común divisor ni el mínimo común múltiplo, sino un máximo común divisor o un mínimo común múltiplo. Esto es debido a que, tal y como están definidos, un mismo par de elementos pueden tener más de un máximo común divisor y más de un mínimo común múltiplo. Por otra parte, en un dominio de integridad no siempre está asegurada la existencia del mínimo común múltiplo o del máximo común denominador de dos elementos cualesquiera.

Dos elementos se dicen coprimos si existe y además (es decir, 1 es ).

Estas son las principales afirmaciones que podemos decir sobre divisibilidad en dominios de integridad sin exigir más condiciones, como que el anillo R sea dominio de factorización única, dominio de ideales principales o que sea dominio euclídeo.

Todo dominio de integridad finito es un cuerpo[5]

Si p es un primo, entonces el dominio de integridad Z(p)= {0, 1, 2,..., p-1} es un cuerpo[5]

Birkhoff- Mc Lane. Algebra Moderna ( en un capítulo inicial)



Escribe un comentario o lo que quieras sobre Dominio de integridad (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!