En matemáticas y estadística, una media o promedio es una medida de tendencia central. Resulta al efectuar una serie determinada de operaciones con un conjunto de números y que, en determinadas condiciones, puede representar por sí solo a todo el conjunto. Existen distintos tipos de medias, tales como la media geométrica, la media ponderada y la media armónica aunque en el lenguaje común, tanto en estadística como en matemáticas la elemental de todas ellas es el término que se refiere generalmente a la media aritmética.
Existen numerosos ejemplos de medias , una de las pocas propiedades compartidas por todas las medias es que cualquier media está comprendida entre el valor máximo y el valor mínimo del conjunto de variables:
Además debe cumplirse que:
.
La media aritmética es un promedio estándar que a menudo se denomina promedio.
La media se confunde a veces con la mediana o moda. La media aritmética es el promedio de un conjunto de valores, o su distribución; sin embargo, para las distribuciones con sesgo, la media no es necesariamente el mismo valor que la mediana o que la moda exponencial y de Poisson.
Por ejemplo, la media aritmética de 34, 27, 45, 55, 22, 34 (seis valores) es
A veces puede ser útil otorgar pesos o valores a los datos dependiendo de su relevancia para determinado estudio. En esos casos se puede utilizar una media ponderada. Si es un conjunto de datos o media muestral y son números reales positivos, llamados "pesos" o factores de ponderación, se define la media ponderada es decir que es relativa a esos pesos como:
La media es invariante frente a transformaciones lineales, cambio de origen y escala, de las variables, es decir si X es una variable aleatoria e Y es otra variable aleatoria que depende linealmente de X, es decir, Y = a·XL + b (donde a representa la magnitud del cambio de escala y b la del cambio de origen) se tiene que:
La media geométrica es un promedio muy útil en conjuntos de números que son interpretados en orden de su producto, no de su suma (tal y como ocurre con la media aritmética). Por ejemplo, las velocidades de crecimiento.
Por ejemplo, la media geométrica de la serie de números 1,2,3,4,5,9 (seis valores) es
La media armónica es un promedio muy útil en conjuntos de números que se definen en relación con alguna unidad, por ejemplo la velocidad (distancia por unidad de tiempo).
Por ejemplo, la media armónica de los números: 34, 27, 45, 55, 22, y 34 es:
Existen diversas generalizaciones de las medias anteriores.
Las medias generalizadas, también conocidas como medias de Hölder, son una abstracción de las medias cuadráticas, aritméticas, geométricas y armónicas. Se definen y agrupan a través de la siguiente expresión:
Eligiendo un valor apropiado del parámetro m, se tiene:
Esta media puede generalizarse para una función monótona como la media-f generalizada:
donde sea una función inyectiva e un intervalo. Escogiendo formas particulares para f se obtienen algunas de las medias más conocidas:
Para una función continua sobre un intervalo [a,b], se puede calcular el valor medio de función sobre [a,b] como:
De hecho la definición anterior vale aun para una función acotada aunque no sea continua, con la condición de que sea medible.
La media estadística se usa en estadística para dos conceptos diferentes aunque numéricamente similares:
En la práctica dada una muestra estadística suficientemente grande el valor de la media muestral de la misma es numéricamente muy cercano a la esperanza matemática de la variable aleatoria medida en esa muestra. Dicho valor esperado, solo es calculable si se conoce con toda exactitud la distribución de probabilidad, cosa que raramente sucede en la realidad, por esa razón, a efectos prácticos la llamada media se refiere normalmente a la media muestral.
La media muestral es una variable aleatoria, ya que depende de la muestra, si bien es una variable aleatoria en general con una varianza menor que las variables originales usadas en su cálculo. Si la muestra es grande y está bien escogida, puede tratarse la media muestral como un valor numérico que aproxima con precisión la media poblacional, que caracteriza una propiedad objetiva de la población. Se define como sigue, si se tiene una muestra estadística de valores para una variable aleatoria X con distribución de probabilidad F(x,θ) [donde θ es un conjunto de parámetros de la distribución] se define la media muestral n-ésima como:
.
La media poblacional técnicamente no es una media sino un parámetro fijo que coincide con la esperanza matemática de una variable aleatoria. El nombre "media poblacional" se usa para significar qué valor numérico de una media muestral es numéricamente cercano al parámetro media poblacional, para una muestra adecuada y suficientemente grande.
Otras medias estadísticas son:
Escribe un comentario o lo que quieras sobre Media (matemáticas) (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)