La construcción con regla y compás es el trazado de puntos, segmentos de recta y ángulos usando exclusivamente una regla y compás idealizados. La geometría clásica griega impuso esa norma para las construcciones, aunque los griegos también investigaron las que pueden obtenerse con instrumentos menos básicos.
A la regla se le supone longitud infinita, carencia de marcas que permitan medir o trasladar distancias, y un solo borde. Del compás se supone que se cierra súbitamente cuando se separa del papel, de manera que no puede utilizarse directamente para trasladar distancias, porque «olvida» la separación de sus puntas en cuanto termina de trazar la circunferencia. Esta restricción del compás parece muy incómoda para los usuarios de compases reales, pero carece por otro lado de importancia matemática, porque el traslado de distancias se puede realizar de forma indirecta.
Cualquier punto que sea obtenible usando regla y compás puede conseguirse también usando únicamente compás. Como se verá, algunos problemas de geometría plana clásica imponen la restricción de «solo compás».[cita requerida]
Los problemas más famosos que se propusieron para su resolución «con regla y compás» son la proverbial cuadratura del círculo, la duplicación del cubo y la trisección del ángulo, a los que a veces se añade la construcción del heptágono regular, el primero de los infinitos polígonos regulares imposibles de trazar mediante regla y compás. Tienen en común ser de resolución imposible: está matemáticamente demostrado que no se puede cuadrar el círculo, ni duplicar el cubo, ni trisecar el ángulo, ni trazar un heptágono regular usando exclusivamente la regla y el compás idealizados de la geometría griega.
Pese a esa «imposibilidad lógica» insalvable, muchos persisten en el intento de resolver estos famosos problemas.
Quizás, porque no aciertan a explicarse la imposibilidad, dado que son resolubles si se permiten transformaciones geométricas que no pueden realizarse con regla y compás «euclídeos». Duplicar el cubo es posible utilizando algunas construcciones geométricas que solo requieren un poco más que la regla y el compás clásicos.La regla y el compás de las construcciones geométricas son idealizaciones de las reglas y compases del mundo real. Son conceptos matemáticos abstractos, como pueda serlo la raíz cuadrada, y no instrumentos físicos.
Por supuesto, la regla y compás ideales deben usarse para hacer construcciones ideales. Los dibujos del mundo real tienen imperfecciones: los puntos son en realidad manchas tridimensionales, los segmentos de recta son en realidad cuasi-paralelepípedos o «franjas» algo irregulares de cierta anchura y altura, etc. Estas manchas proyectan sombras cuando son iluminadas por lámparas especiales de luz rasante, que se utilizan profesionalmente para el estudio de las falsificaciones, pues permiten distinguir si un trazo está por encima de otro observando las sombras. Pero las construcciones con regla y compás de la geometría clásica se hacen en la mente, más que en el papel, y son tan idealmente precisas como el álgebra.
Puestas así las cosas, parecería que las construcciones con regla y compás son un simple «juego», más que una disciplina científica seria. Buscar la solución a cualquier construcción particular es un pasatiempo interesante, pero el verdadero interés científico, que estuvo abierto durante más de dos mil años hasta ser resuelto en el siglo XIX, coincidiendo con la demostración de los teoremas fundamentales sobre ecuaciones polinómicas, con la comprensión profunda de los números irracionales y trascendentes y con la aparición del álgebra abstracta, está en los problemas que desbordan los límites de lo factible con regla y compás. Lo interesante es lo que no se puede hacer con regla y compás.
Los tres problemas insolubles clásicos de construcción con regla y compás son:
Estos problemas resistieron durante 2000 años los incontables intentos de encontrar construcciones que los resolvieran con regla y compás, de acuerdo con las normas antes indicadas. A mediados del siglo XIX se demostró matemáticamente que es imposible hacerlo.
Los tres problemas clásicos no son los únicos cuya solución se ha demostrado imposible. La construcción de determinados (infinitos) polígonos regulares, como por ejemplo el heptágono (polígono regular de 7 lados) o el endecágono (polígono regular de 11 lados) también es imposible con regla y compás.
Todas las construcciones con regla y compás son aplicaciones sucesivas de cinco construcciones básicas, usando en cada una los puntos, rectas y círculos que se hayan creado en fases anteriores. Esas cinco únicas construcciones posibles son:
Por ejemplo, partiendo de dos puntos dados, se puede crear una recta, o bien se pueden crear dos círculos (cada punto hace de centro de un círculo y de extremo de otro). Si optamos por los dos círculos, su intersección dará lugar a dos nuevos puntos. Si trazamos segmentos de recta entre los puntos originales y uno de los nuevos puntos, habremos construido un triángulo equilátero. Así pues, el problema: "construir un triángulo equilátero dado uno de sus lados (o los puntos extremos de uno de sus lados) es trivialmente resoluble con regla y compás.
Hay muchas formas distintas de demostrar que algo es imposible. La estrategia que se seguirá en este artículo para presentar un esquema informal de las demostraciones de imposibilidad de los problemas clásicos es la de determinar en primer lugar los límites de la regla y el compás —lo que se puede hacer y lo que no se puede hacer con ellos—, y mostrar seguidamente que para resolver los problemas deberían superarse tales límites.
Usando regla y compás se pueden definir coordenadas en el plano. Se parte de dos puntos que han de considerarse «dados», y se traza la recta que pasa por ambos. Se llama al resultado «eje », y se define la longitud entre los dos puntos dados como unidad de longitud.
Por tanto, tener dos puntos como datos de partida es equivalente a tener un eje de coordenadas y una unidad de longitud.
Ahora bien: una de las construcciones más sencillas con regla y compás es la de trazar una recta perpendicular a otra dada, así que se hace precisamente eso, con lo que se obtiene un «eje ».
Así pues, tener dos puntos como datos es equivalente a tener un sistema de coordenadas cartesianas, con ejes e , y con unidad de distancia.
Por otro lado, un punto en el plano euclídeo puede identificarse con el número complejo . En la construcción con regla y compás, se empieza con un segmento de recta de longitud unitaria. Si se es capaz de construir un punto dado, un punto cualquiera, en el plano complejo, entonces se podrá decir que ese punto es un número complejo construible.
Por ejemplo, si se dan dos puntos como datos, los números complejos , , , , etc. son fácilmente construibles.
De hecho, con construcciones conocidas de la geometría euclidiana se pueden construir los números complejos de la forma x + yi siempre que x e y sean números racionales. De modo más general, usando las mismas construcciones, uno puede, dados dos números complejos a y b, construir a + b, a − b, a × b, y a/b.
Esto muestra que los números construibles forman un cuerpo, que por tanto es un subcuerpo de los números complejos. Puede demostrarse algo más: dada una longitud construible es posible construir su conjugado y su raíz cuadrada.
Como se ha visto, las únicas formas de construir puntos nuevos es como intersección de dos rectas, o de una recta y una circunferencia, o de dos circunferencias. Usando las ecuaciones de las rectas y de las circunferencias, puede demostrarse que los puntos en los que se intersecan yacen en una extensión cuadrática del cuerpo más pequeño, F, que contenga dos puntos en la recta, el centro del círculo, y el radio del círculo. Es decir, que los puntos con intersección son de la forma , donde , y están en F.
Dado que el cuerpo de los puntos construibles es cerrado para las raíces cuadradas, contiene a todos los puntos que puedan obtenerse por una secuencia finita de extensiones cuadráticas con coeficientes racionales del cuerpo de los números complejos. Por lo dicho en el párrafo anterior, se puede demostrar que todo punto construible puede obtenerse por una tal secuencia de extensiones. Como corolario, se encuentra que el grado del polinomio mínimo para un número construible (y por tanto para cualquier longitud construible) es una potencia de 2. En particular cualquier punto o longitud construible es un número algebraico, sin embargo no cualquier número algebraico puede ser construido.
Hay una biyección entre los ángulos construibles y los puntos que son construibles en cualquier circunferencia construible. Los ángulos construibles forman un grupo abeliano bajo la suma-módulo (que se corresponde con la multiplicación de los puntos sobre la circunferencia unitaria, considerados como números complejos). Los ángulos construibles son exactamente aquellos cuya tangente (o equivalentemente, su seno o su coseno) es un número construible. Por ejemplo, el heptadecágono regular (polígono de 17 lados iguales) es construible porque:
,
como descubrió Gauss.
El grupo de los ángulos construibles es cerrado bajo la operación que biseca los ángulos (que se corresponde con la obtención de raíces cuadradas). Los únicos ángulos de orden finito que pueden construirse empezando con dos puntos son aquellos cuyo orden es el producto de una potencia de 2 por un elemento de un conjunto de diversos números primos de Fermat. Además, hay un conjunto denso de ángulos construibles de orden infinito.
Dado un conjunto de puntos en el plano euclídeo, basta seleccionar cualquiera de ellos para llamarlo 0 y cualquier otro para llamarlo 1, y elegir arbitrariamente una orientación, para poder considerar los puntos como un conjunto de números complejos.
Dada cualquiera de tales interpretaciones de un conjunto de puntos como números complejos, los puntos construibles utilizando construcciones válidas con regla y compás son precisamente los elementos del mínimo cuerpo que contiene al conjunto de puntos original, y que es cerrado con respecto a las operaciones de conjugación de complejos y raíz cuadrada (para evitar ambigüedades, puede limitarse la raíz cuadrada, imponiendo que el argumento complejo sea menor de ).
Los elementos de este cuerpo son precisamente aquellos que pueden expresarse como una fórmula en la que intervienen los puntos originales y que solo incluye las operaciones de suma, resta, multiplicación, división, complejo conjugado y raíz cuadrada. Es fácil demostrar que los elementos así obtenidos son un subconjunto numerable, pero denso, del plano complejo. Cada una de las seis operaciones citadas se corresponde con una construcción simple con regla y compás. Por tanto, de la fórmula que define un número puede extraerse directamente la secuencia de construcciones simples con regla y compás que hay que realizar para construir el punto reflejado por la fórmula.
En suma: si se aporta un conjunto de puntos (números complejos) como datos iniciales, y se pide la construcción de otro número complejo, que depende de los datos a través de una fórmula que solo contiene sumas, restas, multiplicaciones, divisiones, conjugación de complejos y raíces cuadradas, ese número "objetivo" es siempre construible en un número finito de pasos (de las construcciones básicas que se han descrito arriba), pasos que además se deducen automáticamente de la fórmula, aunque en muchos casos pueden encontrarse construcciones alternativas más eficientes, atajos de menos pasos.
Hay una alternativa que evita la elección arbitraria de dos puntos para que hagan de 0 y de 1. Dada una orientación arbitrariamente elegida, un conjunto de puntos determina un conjunto de ratios complejas dadas por la razón entre las diferencias de cualesquiera dos pares de puntos. El conjunto de ratios de ese tipo construible usando regla y compás a partir de tal conjunto inicial de ratios es precisamente el cuerpo más pequeño de los que contienen los ratios originales, y es cerrado para la conjugación compleja y la raíz cuadrada.
Por ejemplo, la parte real, imaginaria, y el módulo de un punto o ratio (eligiendo uno de los dos puntos de vista antes descritos, el de asignar arbitrariamente puntos 0 y 1 o el de trabajar con ratios) son construibles, dado que pueden expresarse como:
La duplicación del cubo y la trisección del ángulo requieren ratios que son solución de ecuaciones cúbicas, en tanto que la cuadratura del círculo requiere un ratio trascendente. Ninguno de esos casos forma parte de los cuerpos antes descritos, y por tanto no existe construcción con regla y compás para estos problemas. Una excepción, en el caso de la trisección del ángulo, se da con ángulos especiales como cualquier tal que sea un número racional que tenga como denominador el producto de una potencia de dos y de distintos números primos de Fermat.
El más famoso de los problemas griegos, la cuadratura del círculo plantea la construcción de un cuadrado cuya superficie sea la misma que la de un círculo dado; y, por supuesto, resuelto con regla y compás.
Se ha demostrado que cuadrar el círculo de esta forma es imposible, dado que implica encontrar un número trascendente, a saber . Usando regla y compás solo es posible generar números algebraicos. La frase "cuadratura del círculo" o "cuadrar el círculo" se usa frecuentemente con el sentido de "hacer algo imposible". Con gran fortuna, puesto que es tan imposible como obtener algo distinto de cuatro sumando dos más dos, o dibujar en el plano euclídeo un triángulo que tenga los tres ángulos obtusos.
Sin embargo, si no se exige resolver el problema con solo regla y compás, resulta sencillo hacerlo con una amplia variedad de métodos geométricos y algebraicos. El problema fue resuelto de esta forma muchas veces, ya en la antigüedad.
Duplicar el cubo consiste en construir el lado de un cubo que tenga el doble de volumen que otro cubo cuyo lado se da como dato del problema. Por supuesto, debe hacerse con regla y compás. Es imposible, porque la raíz cúbica de 2, pese a ser un número algebraico, no puede obtenerse de los números enteros por suma, resta, multiplicación, división y extracción de raíces cuadradas, que son las únicas operaciones que pueden hacerse con regla y compás. Esto es así porque el polinomio mínimo de la raíz cúbica de 2 sobre los racionales tiene grado 3. Basta con que se permita utilizar una regla con dos marcas y un compás para que sea posible duplicar el cubo.
Partiendo de un ángulo dado, trisecarlo significa construir un ángulo que mida justo un tercio del ángulo dado. Se demuestra que ello requiere obtener la raíz cúbica de un número complejo cualquiera, con valor absoluto 1. Resulta imposible hacerlo solo con regla y compás.
Se puede esbozar una demostración más completa para el caso de que el ángulo sea de 60°. Si fuera trisecable, entonces el polinomio mínimo de cos 20° tendría que ser de un grado potencia de dos (2,4,8,...). Esto es así porque, como se ha visto antes, construir un ángulo equivale a construir un punto en la circunferencia que subtienda ese ángulo, por lo que tangente, seno y coseno del ángulo deberían ser números construibles, y ya se ha visto que solo los que resultan de polinomios de grado potencia de 2 son construibles.
Usando la identidad trigonométrica
se obtiene, haciendo cos 20° = y,
de modo que, con el cambio de variable, x = 2y,
Si ese polinomio pudiera reducirse a grado 2, tendría una raíz racional, que por el teorema de la raíz racional, debería ser 1 o −1, que evidentemente no son raíces. Por lo tanto, el polinomio mínimo para cos 20° es de grado 3, de modo que cos 20° no es construible y por tanto el ángulo de 60° no puede ser trisecado.
La trisección del ángulo, como muchas otras construcciones imposibles con regla y compás, puede llevarse a cabo fácilmente con el sistema más potente, aunque físicamente sea muy sencillo, de papeles doblados denominado origami. Los axiomas de Huzita (tipos de operaciones de doblado) permiten construir extensiones cúbicas (raíces cúbicas) de longitudes dadas, en tanto que con regla y compás solo pueden construirse extensiones cuadráticas (raíces cuadradas). Ver matemáticas de la papiroflexia
Algunos polígonos regulares (un ejemplo es el pentágono) son fácilmente construibles con regla y compás; otros no. Esto nos lleva a la pregunta: ¿es posible construir cualquier polígono regular con regla y compás?
El primer avance relevante para resolver este problema se debe a Gauss, que mostró en 1801 que un polígono regular de n lados puede construirse con regla y compás siempre que los factores primos impares de n sean primos de Fermat distintos. Gauss conjeturó que esta condición debía ser también necesaria, pero no aportó una demostración de este hecho, que fue lograda por Pierre Wantzel en 1837.
Son muy comunes los problemas donde se busca inscribir una figura dentro de otra, por ejemplo: inscribir un círculo dentro de un triángulo, o viceversa. Para ello se aplican diferentes pasos como la bisección de los ángulos internos de un triángulo, para encontrar su circuncentro, etc. Aquí un ejemplo un poco más complejo sobre la construcción de un círculo inscrito dentro de un segmento circular (figura en la derecha y construcción interactiva aquí). Nótese que el círculo pequeño tiene una tangente común con el círculo que lo contiene; estas consideraciones se toman en cuenta para encontrar una construcción adecuada en función de las condiciones que se otorgan. En este caso, la condición es que dada la distancia , se construya un círculo inscrito dentro del segmento circular, tal que y el círculo exterior sean tangentes al círculo interior.
Es posible, de acuerdo con el teorema de Mohr-Mascheroni, obtener solo con compás cualquier construcción que pueda hacerse con regla y compás (excepto el hecho de trazar una recta). Es imposible obtener una raíz cuadrada solo con regla, de modo que muchas construcciones factibles con compás no lo son con regla. Pero el teorema de Poncelet-Steiner demuestra que basta con disponer previamente de un único círculo y su punto central para que todo lo construible con compás lo sea también solo con regla (y el círculo y su centro previamente trazados).
Arquímedes y Apolonio de Pérgamo realizaron construcciones con «regla marcable», una regla en la que se puedan dibujar rayas para guardar memoria exacta de distancias. Esto les permitía, por ejemplo, partir de un segmento de recta, dos rectas (o círculos) y un punto, y trazar una nueva recta que pasara por el punto dado y se intersecara con las dos rectas iniciales, de modo que la distancia entre los puntos de intersección igualara la longitud del segmento dado. Esta construcción, llamada neusis (inclinación, tendencia), crea un segmento de recta de tamaño prefijado, que cumple la condición de tocar en sus extremos las dos rectas dadas, y además pasa por el punto dado, al que suele llamarse «polo».
Esto extendió la geometría más allá de los Elementos de Euclides. Euclides no tenía ningún axioma, ni podía demostrar ningún teorema, que mostrara siquiera la existencia de la neusis, de modo que no podía usarla en las construcciones. En esta geometría expandida, cualquier distancia cuya razón a una distancia dada sea la solución de una ecuación cúbica o cuártica es construíble. De manera que si se permite usar reglas marcables, y como consecuencia se permite la neusis, la trisección del ángulo y la duplicación del cubo pueden conseguirse. La cuadratura del círculo, en cambio, sigue siendo imposible. Algunos polígonos regulares no construibles con regla y compás clásicos, como el heptágono, lo son con regla marcable. Con neusis y todo, sin embargo, sigue siendo imposible construir muchos (de hecho, infinitos) polígonos regulares, empezando por el de once lados (endecágono).
De modo similar, la teoría matemática del origami, o papiroflexia sin ningún instrumento, solo con hojas de papel, resulta más potente que la regla y compás clásicos. Igual que la regla marcable, el origami permite resolver ecuaciones cúbicas, lo que a su vez abre la resolución de cuárticas, la duplicación del cubo y la trisección del ángulo. Se ha demostrado que los puntos construibles por papiroflexia son exactamente los mismos que con regla marcable y compás; en particular, tampoco el origami permite resolver la cuadratura del círculo. Se pueden hacer también figuras de diversos modelos con el origami o papiroflexia tan solo con una hoja de papel.
En términos abstractos, el uso de estas herramientas más potentes, ya sea la neusis de la regla marcable o el origami o papiroflexia, extienden el cuerpo de los números construíbles a un subcuerpo más amplio de los números complejos, que no solo contiene la raíz cuadrada, sino también la raíz cúbica de cualquier elemento (Como siempre, podemos evitar la ambigüedad sobre de qué raíz cúbica estamos hablando quedándonos solo con los argumentos complejos menores que , para que haya una sola). Las fórmulas aritméticas de los puntos construíbles que hemos descrito más arriba tienen sus análogas en este cuerpo extendido, permitiendo ahora fórmulas que incluyen también raíces cúbicas.
Es posible trisectar un segmento, incluso, dividirlo en cuántas partes se desee, haciendo uso del primer Teorema de Tales.
Así dado un segmento de recta AB es posible dividirlo en tres partes iguales se indica pues que ha de trazarse otro segmento de recta cuyo extremo coincida con algún extremo de AB se sigue con el trazo de una circunferencia con centro en el punto de coincidencia de ambos segmentos, incluido AB, -El radio de la circunferencia debe ser igual que la mitad de AB para lo cual bisecte y halle así mediante el punto medio-. Trace una segunda circunferencia con centro en el punto de intersección de la primera circunferencia con el segundo segmento de recta, el radio es igual al de la primera circunferencia, siga nuevamente al cerciorarse que existen dos puntos de intersección entre la segunda circunferencia y el respectivo segmento de recta de lo contrario prolongue el segmento y al serlo así siga con el trazo de una tercera circunferencia cerca al vértice en oposición a aquel en que coinciden ambos segmentos de recta; (Excluyendo los puntos de intersección en el segmento AB además con el punto de coincidencia de ambos segmentos correspondientes al centro de la primera circunferencia, son tres puntos). Desígnese los puntos de intersección en aumento a partir del vértice:1,2 y 3.
Finalmente se traza desde el punto 3 un segmento de recta hasta el extremo contrario al vértice del segmento AB, compruébese al figurar un triángulo. Cada recta paralela de aquel segmento de recta que además cruce los puntos 2 y 3 intersecara el segmento de recta AB partiendo en tres partes.
Simon Plouffe ha escrito un artículo en el que muestra cómo la regla y el compás pueden usarse como una sencilla computadora, dotada de insospechada potencia de cálculo.
Escribe un comentario o lo que quieras sobre Regla y compás (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)